河南平頂山許昌濟源2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
河南平頂山許昌濟源2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
河南平頂山許昌濟源2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
河南平頂山許昌濟源2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
河南平頂山許昌濟源2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南平頂山許昌濟源2023-2024學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.某同學(xué)用二分法求方程的近似解,該同學(xué)已經(jīng)知道該方程的一個零點在之間,他用二分法操作了7次得到了方程的近似解,那么該近似解的精確度應(yīng)該為A.0.1 B.0.01C.0.001 D.0.00012.已知命題,則命題的否定為()A. B.C. D.3.如圖所示,一個水平放置的平面圖形的直觀圖是一個底角為45°,腰和上底長均為1的等腰梯形,則該平面圖形的面積等于()A. B.C. D.4.若方程表示圓,則實數(shù)的取值范圍是A. B.C. D.5.如圖,在正四棱柱中,,點是平面內(nèi)的一個動點,則三棱錐的正視圖和俯視圖的面積之比的最大值為A B.C. D.6.已知條件,條件,則p是q的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.過點和,圓心在軸上的圓的方程為A. B.C D.8.為了得到函數(shù)的圖象,只需要把函數(shù)的圖象上所有的點①向左平移個單位,再把所有各點的橫坐標縮短到原來的倍;②向左平移個單位,再把所有各點的橫坐標縮短到原來的倍;③各點的橫坐標縮短到原來的倍,再向左平移個單位:④各點的橫坐標縮短到原來的倍,再向左平移個單位其中命題正確的為()A.①③ B.①④C.②③ D.②④9.“xR,exx10”的否定是()A.xR,exx10 B.xR,exx10C.xR,exx10 D.xR,exx1010.七巧板,又稱七巧圖、智慧板,是中國古代勞動人民的發(fā)明,其歷史至少可以追溯到公元前一世紀,到了明代基本定型,于明、清兩代在民間廣泛流傳.某同學(xué)用邊長為4dm的正方形木板制作了一套七巧板,如圖所示,包括5個等腰直角三角形,1個正方形和1個平行四邊形.若該同學(xué)從5個三角形中任取出2個,則這2個三角形的面積之和不小于另外3個三角形面積之和的概率是()A. B.C. D.11.“0≤a≤1”是“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.設(shè)函數(shù)的定義域,函數(shù)的定義域為,則=A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知函數(shù)若關(guān)于的方程有5個不同的實數(shù)根,則的取值范圍為___________.14.已知,且的終邊上一點P的坐標為,則=______15.使得成立的一組,的值分別為_____.16.在正方形ABCD中,E是線段CD的中點,若,則________.三、解答題(本大題共6小題,共70分)17.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱函數(shù)的一個上界.已知函數(shù),.(1)若函數(shù)為奇函數(shù),求實數(shù)的值;(2)在第(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;(3)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.18.已知圓C經(jīng)過點A(0,0),B(7,7),圓心在直線上(1)求圓C的標準方程;(2)若直線l與圓C相切且與x,y軸截距相等,求直線l的方程19.如圖,在同一平面上,已知等腰直角三角形紙片的腰長為3,正方形紙片的邊長為1,其中B、C、D三點在同一水平線上依次排列.把正方形紙片向左平移a個單位,.設(shè)兩張紙片重疊部分的面積為S.(1)求關(guān)于a的函數(shù)解析式;(2)若,求a的值.20.已知的頂點,邊上的中線所在的直線方程為,邊上的高所在的直線方程為.(1)求點的坐標;(2)求所在直線的方程.21.如圖,四棱錐P-ABCD的底面為平行四邊形,M為PC中點(1)求證:BA∥平面PCD;(2)求證:AP∥平面MBD22.已知正項數(shù)列的前項和為,且和滿足:(1)求的通項公式;(2)設(shè),求的前項和;(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】令,則用計算器作出的對應(yīng)值表:由表格數(shù)據(jù)知,用二分法操作次可將作為得到方程的近似解,,,近似解的精確度應(yīng)該為0.01,故選B.2、D【解析】由特稱(存在)量詞命題的否定是全稱量詞命題直接可得.【詳解】由特稱(存在)量詞命題的否定是全稱量詞命題直接可得:命題的否定為:.故選:D3、D【解析】根據(jù)斜二測畫法的規(guī)則,得出該平面圖象的特征,結(jié)合面積公式,即可求解.【詳解】由題意,根據(jù)斜二測畫法規(guī)則,可得該平面圖形是上底長為,下底長為,高為的直角梯形,所以計算得面積為.故選:D.4、A【解析】由二元二次方程表示圓的充要條件可知:,解得,故選A考點:圓的一般方程5、B【解析】由題意可知,P在正視圖中的射影是在C1D1上,AB在正視圖中,在平面CDD1C1上的射影是CD,P的射影到CD的距離是AA1=2,所以三棱錐P﹣ABC的正視圖的面積為三棱錐P﹣ABC的俯視圖的面積的最小值為,所以三棱錐P﹣ABC的正視圖與俯視圖的面積之比的最大值為,故選B點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.6、B【解析】利用充分條件和必要條件的定義進行判斷【詳解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分條件.故選:B7、D【解析】假設(shè)圓心坐標,利用圓心到兩點距離相等可求得圓心,再利用兩點間距離公式求得半徑,從而得到圓的方程.【詳解】設(shè)圓心坐標為:則:,解得:圓心為,半徑所求圓的方程為:本題正確選項:【點睛】本題考查已知圓心所在直線和圓上兩點求解圓的方程的問題,屬于基礎(chǔ)題.8、B【解析】利用三角函數(shù)圖象變換可得出結(jié)論.【詳解】因為,所以,為了得到函數(shù)的圖象,只需要把函數(shù)的圖象上所有的點向左平移個單位,再把所有各點的橫坐標縮短到原來的倍,或?qū)⒑瘮?shù)的圖象上各點的橫坐標縮短到原來的倍,再向左平移個單位.故①④滿足條件,故選:B.9、B【解析】由全稱命題的否定即可得解.【詳解】因為命題“xR,exx10”為全稱命題,所以該命題的否定為:xR,exx10.故選:B.10、D【解析】先逐個求解所有5個三角形的面積,再根據(jù)要求計算概率.【詳解】如圖所示,,,,,的面積分別為,,將,,,,分別記為,,,,,從這5個三角形中任取出2個,則樣本空間,共有10個樣本點記事件表示“從5個三角形中任取出2個,這2個三角形的面積之和不小于另外3個三角形面積之和”,則事件包含的樣本點為,,,共3個,所以故選:D11、B【解析】先根據(jù)“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立”得0<a<1【詳解】設(shè)p:“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立則由p知一元二次函數(shù)y=x2-2ax+a的圖象開口向上,且所以對于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1?所以“0≤a≤1”是“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立”故選:B.【點睛】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若p是q的必要不充分條件,則q對應(yīng)集合是p對應(yīng)集合的真子集;(2)若p是q充分不必要條件,則p對應(yīng)集合是q對應(yīng)集合的真子集;(3)若p是q的充分必要條件,則p對應(yīng)集合與q對應(yīng)集合相等;(4)若p是q的既不充分又不必要條件,q對的集合與p對應(yīng)集合互不包含12、B【解析】由題意知,,所以,故選B.點睛:集合是高考中必考知識點,一般考查集合的表示、集合的運算比較多.對于集合的表示,特別是描述法的理解,一定要注意集合中元素是什么,然后看清其滿足的性質(zhì),將其化簡;考查集合的運算,多考查交并補運算,注意利用數(shù)軸來運算,要特別注意端點的取值是否在集合中,避免出錯二、填空題(本大題共4小題,共20分)13、【解析】根據(jù)函數(shù)的解析式作出函數(shù)的大致圖像,再將整理變形,然后將方程的根的問題轉(zhuǎn)化為函數(shù)圖象的交點問題解決.【詳解】由題意得,即或,的圖象如圖所示,關(guān)于的方程有5個不同的實數(shù)根,則或,解得,故答案為:14、【解析】先求解,判斷的終邊在第四象限,計算,結(jié)合,即得解【詳解】由題意,故點,故終邊在第四象限且,又故故答案為:15、,(不唯一)【解析】使得成立,只需,舉例即可.【詳解】使得成立,只需,所以,,使得成立的一組,的值分別為,故答案為:,(不唯一)16、【解析】詳解】由圖可知,,所以))所以,故,即,即得三、解答題(本大題共6小題,共70分)17、(1);(2);(3).【解析】(1)由函數(shù)為奇函數(shù)可得,即,整理得,可得,解得,經(jīng)驗證不合題意.(2)根據(jù)單調(diào)性的定義可證明函數(shù)在區(qū)間上為增函數(shù),從而可得在區(qū)間上的值域為,故,從而可得所有上界構(gòu)成的集合為.(3)將問題轉(zhuǎn)化為在上恒成立,整理得在上恒成立,通過判斷函數(shù)的單調(diào)性求得即可得到結(jié)果試題解析:(1)∵函數(shù)是奇函數(shù),∴,即,∴,∴,解得,當時,,不合題意,舍去∴.(2)由(1)得,設(shè),令,且,∵;∴在上是減函數(shù),∴在上是單調(diào)遞增函數(shù),∴在區(qū)間上是單調(diào)遞增,∴,即,∴在區(qū)間上的值域為,∴,故函數(shù)在區(qū)間上的所有上界構(gòu)成的集合為.(3)由題意知,上恒成立,∴,∴,因此在上恒成立,∴設(shè),,,由知,設(shè),則,,∴在上單調(diào)遞減,在上單調(diào)遞增,∴在上的最大值為,在上的最小值為,∴∴的取值范圍.點睛:(1)本題屬于新概念問題,解題的關(guān)鍵是要緊緊圍繞所給出的新定義,然后將所給問題轉(zhuǎn)化為函數(shù)的最值(或值域)問題處理(2)求函數(shù)的最值(或值域)時,利用單調(diào)性是常用的方法之一,為此需要先根據(jù)定義判斷出函數(shù)的單調(diào)性,再結(jié)合所給的定義域求出最值(或值域)18、(1)(x﹣3)2+(y﹣4)2=25(2)yx或x+y+57=0或x+y﹣57=0【解析】(1)設(shè)圓心C(a,b),半徑為r,然后根據(jù)條件建立方程組求解即可;(2)分直線l經(jīng)過原點、直線l不經(jīng)過原點兩種情況求解即可.【小問1詳解】根據(jù)題意,設(shè)圓心C(a,b),半徑為r,標準方程為(x﹣a)2+(y﹣b)2=r2,圓C經(jīng)過點A(0,0),B(7,7),圓心在直線上,則有,解可得,則圓C的標準方程為(x﹣3)2+(y﹣4)2=25,小問2詳解】若直線l與圓C相切且與x,y軸截距相等,分2種情況討論:①直線l經(jīng)過原點,設(shè)直線l的方程為y=kx,則有5,解得k,此時直線l的方程為yx;②直線l不經(jīng)過原點,設(shè)直線l的方程為x+y﹣m=0,則有5,解得m=7+5或7﹣5,此時直線l方程為x+y+57=0或x+y﹣57=0;綜合可得:直線l的方程為yx或x+y+57=0或x+y﹣57=019、(1);(2)或.【解析】(1)討論、、分別求對應(yīng)的,進而寫出函數(shù)解析式的分段形式.(2)根據(jù)(1)所得解析式,將代入求a值即可.【小問1詳解】如下圖,延長到上的,又,則,∴,當時,;當時,;當時,.綜上,.小問2詳解】由(1)知:在上,;在上,,整理得,解得(舍)或.綜上,或時,.20、(1)(2)【解析】(1)根據(jù)AC和BH的垂直關(guān)系可得到直線的方程為,再代入點A的坐標可得到直線的方程為,聯(lián)立CM直線可得到C點坐標;(2)設(shè),則,將兩個點分別帶入BH和CM即可求出,結(jié)合第一問得到BC的方程解析:(1)因為,的方程為,不妨設(shè)直線的方程為,將代入得,解得,所以直線的方程為,聯(lián)立直線的方程,即,解得點的坐標為.(2)設(shè),則,因為點在上,點在上,所以,解得,所以,所以直線的方程為,整理得.21、(1)見解析(2)見解析【解析】(1)根據(jù)平行四邊形的性質(zhì)可知,結(jié)合直線與平面平行的判定定理可得結(jié)論;(2)設(shè),連接,由平行四邊形的性質(zhì)可知為中位線,從而得到,利用線面平行的判定定理,即可證出平面.【詳解】證明(1)∵如圖,四棱錐P-ABCD的底面為平行四邊形,∴BC∥AD,又∵AD?平面PAD,BC?平面PAD,∴BC∥平面PAD;(2)設(shè)AC∩BD=H,連接MH,∵H為平行四邊形ABCD對角線的交點,∴H為AC中點,又∵M為PC中點,∴MH為△PAC中位線,可得MH∥PA,MH?平面MBD,PA?平面MBD,所以PA∥平面MBD【點睛】本題主要考查線面平行的判定定理,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.22、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)?(an-an-1-2)=0.從而能求出{an}的通項公式;(2)由(1)知,由此利用裂項求和法能求出Tn(3)由(2)知從而得到.由此能求出任意n∈N*,Tn都成立的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論