![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4數(shù)列求和(練)解析版_第1頁](http://file4.renrendoc.com/view10/M01/18/0A/wKhkGWV6Y-uAEqRJAAENqCZdzVk989.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4數(shù)列求和(練)解析版_第2頁](http://file4.renrendoc.com/view10/M01/18/0A/wKhkGWV6Y-uAEqRJAAENqCZdzVk9892.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4數(shù)列求和(練)解析版_第3頁](http://file4.renrendoc.com/view10/M01/18/0A/wKhkGWV6Y-uAEqRJAAENqCZdzVk9893.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4數(shù)列求和(練)解析版_第4頁](http://file4.renrendoc.com/view10/M01/18/0A/wKhkGWV6Y-uAEqRJAAENqCZdzVk9894.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題7.4數(shù)列求和(練)解析版_第5頁](http://file4.renrendoc.com/view10/M01/18/0A/wKhkGWV6Y-uAEqRJAAENqCZdzVk9895.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題7.4數(shù)列求和練基礎(chǔ)練基礎(chǔ)1.(2021·全國高三其他模擬)設(shè)數(shù)列{an}的前n項和為Sn,若SKIPIF1<0,則S99=()A.7 B.8 C.9 D.10【答案】C【解析】采用裂項相消法求數(shù)列的和【詳解】因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選C.2.(2017·全國高考真題(理))(2017新課標(biāo)全國II理科)我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈()A.1盞B.3盞C.5盞D.9盞【答案】B【解析】設(shè)塔頂?shù)腶1盞燈,由題意{an}是公比為2的等比數(shù)列,∴S7=a1解得a1=3.故選:B.3.(2019·全國高考真題(文))已知各項均為正數(shù)的等比數(shù)列的前4項和為15,且,則()A.16 B.8 C.4 D.2【答案】C【解析】設(shè)正數(shù)的等比數(shù)列{an}的公比為,則,解得,,故選C.4.(2020·山東曲阜一中高三3月月考)【多選題】在《增刪算法統(tǒng)宗》中有這樣一則故事:“三百七十八里關(guān),初行健步不為難;次日腳痛減一半,如此六日過其關(guān).”則下列說法正確的是()A.此人第二天走了九十六里路 B.此人第三天走的路程站全程的SKIPIF1<0C.此人第一天走的路程比后五天走的路程多六里 D.此人后三天共走了42里路【答案】ACD【解析】設(shè)此人第SKIPIF1<0天走SKIPIF1<0里路,則數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,對于A,由于SKIPIF1<0,所以此人第二天走了九十六里路,所以A正確;對于B,由于SKIPIF1<0SKIPIF1<0,所以B不正確;對于C,由于SKIPIF1<0,所以此人第一天走的路程比后五天走的路程多六里,所以C正確;對于D,由于SKIPIF1<0,所以D正確,故選:ACD5.(2019·全國高考真題(文))記Sn為等比數(shù)列{an}的前n項和.若,則S4=___________.【答案】.【解析】設(shè)等比數(shù)列的公比為,由已知,即解得,所以.6.(2021·四川成都市·石室中學(xué)高三三模)記SKIPIF1<0為遞增等比數(shù)列SKIPIF1<0的前n項和,若SKIPIF1<0,SKIPIF1<0則SKIPIF1<0的值為______.【答案】1023【解析】首先利用已知條件求得等比數(shù)列的公比和首項,最后根據(jù)等比數(shù)列的前n項和公式求出SKIPIF1<0即可.【詳解】因為數(shù)列SKIPIF1<0為等比數(shù)列,所以SKIPIF1<0,解得SKIPIF1<0,設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因為等比數(shù)列SKIPIF1<0是遞增數(shù)列,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:10237.(2021·甘肅白銀市·高三其他模擬(理))已知正項等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0中不超過2021的所有項的和為___________.【答案】2046【解析】先根據(jù)題意列方程組,求出通項公式,再判斷不超過2021的所有項的和為前10項的和,直接利用等比數(shù)列的前n項和公式求和即可.【詳解】設(shè)正項等比數(shù)列SKIPIF1<0的公比為q,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,解得:SKIPIF1<0.所以數(shù)列SKIPIF1<0中不超過2021的所有項的和為:SKIPIF1<0.故答案為:2046.8.(2021·福建高三其他模擬)記SKIPIF1<0為等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和,已知SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由已知SKIPIF1<0,令SKIPIF1<0,求出SKIPIF1<0,再令SKIPIF1<0,SKIPIF1<0,求出等比數(shù)列的公比,由SKIPIF1<0,即可求解;(2)由(1)求出SKIPIF1<0通項公式,可得數(shù)列SKIPIF1<0為等比數(shù)列,根據(jù)等比數(shù)列的前SKIPIF1<0項和公式,即可得出結(jié)論.【詳解】(1)令SKIPIF1<0,則由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,兩式相減,可得SKIPIF1<0,即SKIPIF1<0,依題意,SKIPIF1<0為等比數(shù)列,故SKIPIF1<0;(2)由(1)可知SKIPIF1<0為首項等于1,公比等于2的等比數(shù)列,故SKIPIF1<0;故SKIPIF1<0為首項等于SKIPIF1<0,公比等于SKIPIF1<0的等比數(shù)列,故SKIPIF1<0.故SKIPIF1<0.9.(2021·遼寧高三其他模擬)已知SKIPIF1<0為等差數(shù)列,SKIPIF1<0為等比數(shù)列,且滿足SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的通項公式;(2)對任意的正整數(shù)n,設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)出數(shù)列的公差和公比,結(jié)合條件求出公差和公比,然后寫出通項公式;(2)求出SKIPIF1<0,結(jié)合錯位相減法求和可得數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,等比數(shù)列SKIPIF1<0的公比為q,由SKIPIF1<0,則1+3d=4d,可得d=1,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,解得q=2,所以SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0所以SKIPIF1<0.10.(2021·廣東實驗中學(xué)高三其他模擬)已知數(shù)列{an}中,a1=1,其前n項和Sn,滿足an+1=Sn+1(n∈N*).(1)求Sn;(2)記bn=SKIPIF1<0,求數(shù)列{bn}的前n項和Tn.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由數(shù)列的遞推式和等比數(shù)列的定義、通項公式,可得所求;(2)求得SKIPIF1<0,由數(shù)列的裂項相消求和,化簡即可得到答案.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0是首項為1,公比為2的等比數(shù)列,其通項公式為SKIPIF1<0,所以SKIPIF1<0.(2)因為SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0故SKIPIF1<0SKIPIF1<0練提升TIDHNEG練提升TIDHNEG1.【多選題】(2021·吉林松原市·高三月考)在數(shù)學(xué)課堂上,為提高學(xué)生探究分析問題的能力,教師引導(dǎo)學(xué)生構(gòu)造新數(shù)列:現(xiàn)有一個每項都為1的常數(shù)列,在此數(shù)列的第SKIPIF1<0項與第SKIPIF1<0項之間插入首項為2,公比為2,的等比數(shù)列的前SKIPIF1<0項,從而形成新的數(shù)列SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】根據(jù)題意求出n,然后即可求出SKIPIF1<0,再利用錯位相減法求出新數(shù)列的和.【詳解】設(shè)SKIPIF1<0介于第SKIPIF1<0個1與第SKIPIF1<0個1之間或者為這兩個1當(dāng)中的一個,則從新數(shù)列的第1個1到第SKIPIF1<0個1一共有SKIPIF1<0項,從新數(shù)列的第1個1到第SKIPIF1<0個1一共有SKIPIF1<0項,所以SKIPIF1<0,解得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,故A正確,B錯誤;SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D正確,C錯誤,故選:AD.2.【多選題】(2021·河北高三其他模擬)數(shù)學(xué)中有各式各樣富含詩意的曲線,螺旋線就是其中比較特別的一類.螺旋線這個名詞來源于希臘文,它的原意是“旋卷”或“纏卷”.小明對螺旋線有著濃厚的興趣,連接嵌套的各個正方形的頂點就得到了近似于螺旋線的美麗圖案,其具體作法是:在邊長為1的正方形SKIPIF1<0中,作它的內(nèi)接正方形SKIPIF1<0,且使得SKIPIF1<0;再作正方形SKIPIF1<0的內(nèi)接正方形SKIPIF1<0,且使得SKIPIF1<0;類似地,依次進(jìn)行下去,就形成了陰影部分的圖案,如圖所示.設(shè)第n個正方形的邊長為SKIPIF1<0(其中第1個正方形SKIPIF1<0的邊長為SKIPIF1<0,第2個正方形SKIPIF1<0的邊長為SKIPIF1<0,…),第n個直角三角形(陰影部分)的面積為SKIPIF1<0(其中第1個直角三角形SKIPIF1<0的面積為SKIPIF1<0,第2個直角三角形SKIPIF1<0的面積為SKIPIF1<0,…),則()A.?dāng)?shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列 B.SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列 D.?dāng)?shù)列SKIPIF1<0的前n項和SKIPIF1<0【答案】BD【解析】先得到SKIPIF1<0,即SKIPIF1<0可判斷A,再求出SKIPIF1<0,可判斷B與C,最后求出SKIPIF1<0,可判斷D.【詳解】如圖:由圖知SKIPIF1<0,對于A:SKIPIF1<0,數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,故A不正確;對于BC:因為SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,故B正確,C不正確;對于D:因為SKIPIF1<0,故D正確,故選:BD.3.(2022·河南高三月考(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由SKIPIF1<0,化簡得到SKIPIF1<0,結(jié)合等比數(shù)列的通項公式,即可求解;(2)由(1)知SKIPIF1<0,單調(diào)SKIPIF1<0,結(jié)合等差數(shù)列的求和公式和乘公比錯位相減法,即可求解.【詳解】(1)由題意,數(shù)列SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即數(shù)列SKIPIF1<0的通項公式SKIPIF1<0.(2)由(1)知SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.4.(2021·全國高三其他模擬(理))已知等差數(shù)列SKIPIF1<0滿足SKIPIF1<0,正項等比數(shù)列SKIPIF1<0滿足首項為1,前3項和為7.(1)求SKIPIF1<0與SKIPIF1<0的通項公式;(2)求SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,運(yùn)用等差數(shù)列的通項公式,可得首項和公差,可得SKIPIF1<0;設(shè)正項等比數(shù)列SKIPIF1<0的公比為q,q>0,由等比數(shù)列的通項公式,解方程可得q,進(jìn)而得到SKIPIF1<0;(2)由(1)可得SKIPIF1<0,利用錯位相減法求和,即可得答案.【詳解】解:(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0;設(shè)正項等比數(shù)列SKIPIF1<0的公比為q,q>0,由首項為1,前3項和為7,可得SKIPIF1<0,解得q=2,則SKIPIF1<0;(2)由(1)可得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,兩式相減可得SKIPIF1<0=SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.5.(2021·黑龍江哈爾濱市·哈九中高三其他模擬(理))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求SKIPIF1<0最小值.【答案】(1)SKIPIF1<0;(2)最小值為SKIPIF1<0.【解析】(1)由已知條件得到SKIPIF1<0為等比數(shù)列,即可得到SKIPIF1<0通項;(2)錯位相減求出SKIPIF1<0,根據(jù)單調(diào)性求出SKIPIF1<0最小值.【詳解】解:(1)由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0是以2為公比的等比數(shù)列,記公比為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩式相減,得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0時,SKIPIF1<0最小,最小值為SKIPIF1<0.6.(2021·四川省綿陽南山中學(xué)高三其他模擬(理))已知SKIPIF1<0是等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)11.【解析】(1)設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)條件列出SKIPIF1<0,求得首項和公比,從而求得通項公式;(2)由(1)求得SKIPIF1<0,分奇偶求解SKIPIF1<0即可求得滿足條件的最小n值.【詳解】(1)設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.由題意得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0.(2)由(1)有SKIPIF1<0.由SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,上式不成立;-當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.綜上,SKIPIF1<0的最小值為11.7.(2021·全國高三其他模擬)已知數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項公式;(2)在數(shù)列SKIPIF1<0中,去掉第SKIPIF1<0項,第SKIPIF1<0項,…,第SKIPIF1<0項(SKIPIF1<0為正整數(shù))得到的數(shù)列記為SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由等比數(shù)列通項公式可求得SKIPIF1<0,進(jìn)而得到SKIPIF1<0;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,根據(jù)SKIPIF1<0三者之間的關(guān)系可整理得到當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,利用等差數(shù)列求和公式可整理求得結(jié)果.【詳解】(1)由題意得:SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…①,SKIPIF1<0,SKIPIF1<0…②,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…③,由①知:當(dāng)SKIPIF1<0時,SKIPIF1<0;由③知:當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,SKIPIF1<0;由②知:當(dāng)SKIPIF1<0時,SKIPIF1<0,即當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0;SKIPIF1<0SKIPIF1<0;綜上所述:SKIPIF1<0.8.(2020屆浙江省溫麗聯(lián)盟高三第一次聯(lián)考)設(shè)SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,其中SKIPIF1<0,且SKIPIF1<0.(Ⅰ)求SKIPIF1<0的值,并求出數(shù)列SKIPIF1<0的通項公式;(Ⅱ)設(shè)SKIPIF1<0,求證:SKIPIF1<0.【答案】(Ⅰ)SKIPIF1<0,SKIPIF1<0;(Ⅱ)證明見解析.【解析】(Ⅰ)解:令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,∵SKIPIF1<0為等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0;(Ⅱ)證:由題意得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為遞增數(shù)列,即SKIPIF1<0,∴SKIPIF1<0成立.9.(2019·浙江高考模擬)已知數(shù)列中,,(1)令,求證:數(shù)列是等比數(shù)列;(2)令,當(dāng)取得最大值時,求的值.【答案】(I)見解析(2)最大,即【解析】(1)兩式相減,得∴即:∴數(shù)列是以2為首項,2為公比的等比數(shù)列(2)由(1)可知,即也滿足上式令,則,∴最大,即10.(2020屆山東濟(jì)寧市兗州區(qū)高三網(wǎng)絡(luò)模擬考)在①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,這三個條件中任選一個,補(bǔ)充在下面問題中,并解答.已知等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,前n項和為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為q,且SKIPIF1<0,____________.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式.(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0,的前n項和SKIPIF1<0.注:如果選擇多個條件分別解答,按第一個解答計分.【答案】(1)見解析(2)見解析【解析】方案一:選條件①(1)SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0方案二:選條件②(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0方案三:選條件③SKIPIF1<0SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0練真題TIDHNEG練真題TIDHNEG1.(2020·全國高考真題(理))數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.2 B.3 C.4 D.5【答案】C【解析】在等式SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以,數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:C.2.(2021·浙江高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.記數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】顯然可知,SKIPIF1<0,利用倒數(shù)法得到SKIPIF1<0,再放縮可得SKIPIF1<0,由累加法可得SKIPIF1<0,進(jìn)而由SKIPIF1<0局部放縮可得SKIPIF1<0,然后利用累乘法求得SKIPIF1<0,最后根據(jù)裂項相消法即可得到SKIPIF1<0,從而得解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0根據(jù)累加法可得,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0SKIPIF1<0,由累乘法可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,由裂項求和法得:所以SKIPIF1<0,即SKIPIF1<0.故選:A.3.(2020·全國高考真題(理))設(shè)SKIPIF1<0是公比不為1的等比數(shù)列,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的等差中項.(1)求SKIPIF1<0的公比;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的等差中項,SKIPIF1<0,SKIPIF1<0;(2)設(shè)SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,②①SKIPIF1<0②得,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.4.(2020·全國高考真題(文))設(shè)等比數(shù)列{an}滿足SKIPIF1<0,SKIPIF1<0.(1)求{an}的通項公式;(2)記SKIPIF1<0為數(shù)列{log3an}的前n項和.若SKIPIF1<0,求m.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)題意,有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;(2)令SKIPIF1<0,所以SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0,整理得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0.5.(2020·山東省高考真題)已知公比大于SKIPIF1<0的等比數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)記SKIPIF1<0為SKIPIF1<0在區(qū)間SKIPIF1<0中的項的個數(shù),求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由于數(shù)列SKIPIF1<0是公比大于SKIPIF1<0的等比數(shù)列,設(shè)首項為SKIPIF1<0,公比為SKIPIF1<0,依題意有SKIPIF1<0,解得解得SKIPIF1<0,或SKIPIF1<0(舍),所以SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準(zhǔn)發(fā)放服務(wù)消費(fèi)券的具體措施
- 2025年度新能源汽車電池回收利用合同-@-28
- 2025年度新型城鎮(zhèn)化建設(shè)項目招投標(biāo)管理與合同執(zhí)行標(biāo)準(zhǔn)
- 中國企業(yè)理財行業(yè)市場深度分析及發(fā)展?jié)摿︻A(yù)測報告
- 2025年中國木珠壁掛畫行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025年度公司員工宿舍租賃合同示范文本
- 誠實守信申請書
- 2025年度合同擔(dān)保在跨境貿(mào)易中的風(fēng)險控制
- 2025年度盡職調(diào)查報告應(yīng)用與風(fēng)險防范合同
- 2025年度數(shù)據(jù)中心建設(shè)與運(yùn)營管理合同
- 春季安全教育培訓(xùn)課件
- 《大學(xué)英語1》期末考試試卷及答案(???
- 《石油鉆井基本知識》課件
- 2024新滬教版英語(五四學(xué)制)七年級上單詞默寫單
- 電力兩票培訓(xùn)
- TCCEAS001-2022建設(shè)項目工程總承包計價規(guī)范
- 2024.8.1十七個崗位安全操作規(guī)程手冊(值得借鑒)
- 小王子-英文原版
- 二次供水衛(wèi)生管理制度及辦法(4篇)
- 電影《白日夢想家》課件
- 婦產(chǎn)科產(chǎn)后虛脫患者的應(yīng)急預(yù)案及程序
評論
0/150
提交評論