




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
南京棲霞中學2024年中考數學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在同一平面內,下列說法:①過兩點有且只有一條直線;②兩條不相同的直線有且只有一個公共點;③經過直線外一點有且只有一條直線與已知直線垂直;④經過直線外一點有且只有一條直線與已知直線平行,其中正確的個數為(
)A.1個 B.2個 C.3個 D.4個2.2018年,我國將加大精準扶貧力度,今年再減少農村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數據280萬用科學計數法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×1073.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.4.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數量比第一個月多440輛.設該公司第二、三兩個月投放單車數量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4405.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數為()A.125° B.135° C.145° D.155°6.如圖,已知數軸上的點A、B表示的實數分別為a,b,那么下列等式成立的是()A. B.C. D.7.化簡(﹣a2)?a5所得的結果是()A.a7 B.﹣a7 C.a10 D.﹣a108.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a= B.a=2b C.a=b D.a=3b9.如圖,正方形ABCD中,AB=6,G是BC的中點.將△ABG沿AG對折至△AFG,延長GF交DC于點E,則DE的長是()A.1 B.1.5 C.2 D.2.510.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數據用科學記數法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人11.某公司第4月份投入1000萬元科研經費,計劃6月份投入科研經費比4月多500萬元.設該公司第5、6個月投放科研經費的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50012.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數字表示在該位置上的小正方體的個數,那么,這個幾何體的左視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,拋物線交軸于,兩點,交軸于點,點關于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.14.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.15.因式分解:_________________.16.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.17.不等式>4﹣x的解集為_____.18.已知a1=,a2=,a3=,a4=,a5=,…,則an=_____.(n為正整數).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數軸上.20.(6分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?21.(6分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.22.(8分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.23.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.24.(10分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉,旋轉角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形25.(10分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數;(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.26.(12分)如圖,小華和同伴在春游期間,發(fā)現在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數據求出DE的長度.(結果保留根號)27.(12分)在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】
根據直線的性質公理,相交線的定義,垂線的性質,平行公理對各小題分析判斷后即可得解.【題目詳解】解:在同一平面內,①過兩點有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個公共點,平行沒有公共點,故②錯誤;③在同一平面內,經過直線外一點有且只有一條直線與已知直線垂直,故③正確;④經過直線外一點有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個,故選C.【題目點撥】本題考查了平行公理,直線的性質,垂線的性質,以及相交線的定義,是基礎概念題,熟記概念是解題的關鍵.2、B【解題分析】分析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:280萬這個數用科學記數法可以表示為故選B.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.3、B【解題分析】
觀察圖形,利用中心對稱圖形的性質解答即可.【題目詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【題目點撥】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關鍵.4、A【解題分析】
根據題意可以列出相應的一元二次方程,從而可以解答本題.【題目詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【題目點撥】此題主要考查一元二次方程的應用,解題的關鍵是根據題意找到等量關系進行列方程.5、A【解題分析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質、三角形內角和定理,鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題.6、B【解題分析】
根據圖示,可得:b<0<a,|b|>|a|,據此判斷即可.【題目詳解】∵b<0<a,|b|>|a|,
∴a+b<0,
∴|a+b|=-a-b.
故選B.【題目點撥】此題主要考查了實數與數軸的特征和應用,以及絕對值的含義和求法,要熟練掌握.7、B【解題分析】分析:根據同底數冪的乘法計算即可,計算時注意確定符號.詳解:(-a2)·a5=-a7.故選B.點睛:本題考查了同底數冪的乘法,熟練掌握同底數的冪相乘,底數不變,指數相加是解答本題的關鍵.8、B【解題分析】
從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【題目詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【題目點撥】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.9、C【解題分析】
連接AE,根據翻折變換的性質和正方形的性質可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據勾股定理求出DE的長.【題目詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【題目點撥】熟練掌握翻折變換、正方形的性質、全等三角形的判定與性質是本題的解題關鍵.10、C【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】2536000人=2.536×106人.故選C.【題目點撥】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.11、A【解題分析】
設該公司第5、6個月投放科研經費的月平均增長率為x,5月份投放科研經費為1000(1+x),6月份投放科研經費為1000(1+x)(1+x),即可得答案.【題目詳解】設該公司第5、6個月投放科研經費的月平均增長率為x,則6月份投放科研經費1000(1+x)2=1000+500,故選A.【題目點撥】考查一元二次方程的應用,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.12、A【解題分析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】
根據拋物線解析式求得點D(1,4)、點E(2,3),作點D關于y軸的對稱點D′(﹣1,4)、作點E關于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據此根據勾股定理可得答案.【題目詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關于對稱軸的對稱點E的坐標為(2,3),作點D關于y軸的對稱點D′(﹣1,4),作點E關于x軸的對稱點E′(2,﹣3),連結D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【題目點撥】本題主要考查拋物線的性質以及兩點間的距離公式,解題的關鍵是熟練掌握拋物線的性質,利用數形結合得出答案.14、30【解題分析】
根據角平分線的定義可得∠PBC=20°,∠PCM=50°,根據三角形外角性質即可求出∠P的度數.【題目詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【題目點撥】本題考查及角平分線的定義及三角形外角性質,三角形的外角等于和它不相鄰的兩個內角的和,熟練掌握三角形外角性質是解題關鍵.15、【解題分析】
提公因式法和應用公式法因式分解.【題目詳解】解:.故答案為:【題目點撥】本題考查因式分解,要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.16、【解題分析】【分析】連接半徑和弦AE,根據直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【題目詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【題目點撥】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.17、x>1.【解題分析】
按照去分母、去括號、移項、合并同類項、系數化為1的步驟求解即可.【題目詳解】解:去分母得:x﹣1>8﹣2x,移項合并得:3x>12,解得:x>1,故答案為:x>1【題目點撥】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.18、.【解題分析】
觀察分母的變化為n的1次冪加1、2次冪加1、3次冪加1…,n次冪加1;分子的變化為:3、5、7、9…2n+1.【題目詳解】解:∵a1=,a2=,a3=,a4=,a5=,…,∴an=,故答案為:.【題目點撥】本題考查學生通過觀察、歸納、抽象出數列的規(guī)律的能力,要求學生首先分析題意,找到規(guī)律,并進行推導得出答案.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)x=;(2)x>3;數軸見解析;【解題分析】
(1)先把分式方程轉化成整式方程,求出方程的解,再進行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【題目詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數軸上表示為:.【題目點撥】本題考查了解分式方程和解一元一次不等式組、在數軸上表示不等式組的解集等知識點,能把分式方程轉化成整式方程是解(1)的關鍵,能根據不等式的解集得出不等式組的解集是解(2)的關鍵.20、(1)2000;(2)2米【解題分析】
(1)設未知數,根據題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【題目詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據題意得:﹣=4解得:x=2000,經檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.21、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3【解題分析】
(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質知、,據此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【題目詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉性質知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【題目點撥】本題考查了正方形的性質與判定,相似三角形的判定與性質等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質、相似三角形的判定與性質是解題的關鍵.22、(1)證明見解析;(2)3【解題分析】
(1)連接OC,AC,可先證明AC平分∠BAE,結合圓的性質可證明OC∥AE,可得∠OCB=90°,可證得結論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【題目詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=【題目點撥】本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關鍵,即有切點時連接圓心和切點,然后證明垂直,沒有切點時,過圓心作垂直,證明圓心到直線的距離等于半徑.23、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解題分析】
(1)、根據等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據題意列出一元一次方程求出a的值得出答案.【題目詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.24、(1);(2);(3).【解題分析】
(1)根據定義可知△ABC∽△AB′C′,再根據相似三角形的面積之比等于相似比的平方即可;(2)根據四邊形是矩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 事業(yè)單位服務合同管理流程
- 大型活動食堂餐飲服務租賃合同
- 萬科物業(yè)租戶合同管理協議2025
- 河南省洛陽市2024-2025學年高二下學期期中考試歷史試卷(含答案)
- 2024-2025學年度江西省南昌中學(三經路校區(qū))高一下學期期中考試歷史試題(含答案)
- 江蘇省淮安市2025屆高三11月第一次調研測試-生物試題(含答案)
- 精細專利代理人合作協議
- 初中數學探索三角形全等的條件第1課時課件2024-2025學年北師大版數學七年級下冊
- 第9課 遼、西夏與北宋并立 教學設計-2024-2025學年統編版(2024)七年級歷史下冊
- 英語Unit 3 This is Miss Li教案及反思
- 某醫(yī)院行政查房制度及安排
- 現金日記賬模板(出納版)
- 健康管理實踐案例研究
- 探尋中國茶:一片樹葉的傳奇之旅學習通超星期末考試答案章節(jié)答案2024年
- 一年級勞動上冊全冊教案
- 鐵路貨運大數據分析應用
- 2023年電氣中級工程師考試題庫
- 健康教育心肺復蘇知識講座(3篇模板)
- 五年級上冊體育教案(表格式)
- DL-T5190.1-2022電力建設施工技術規(guī)范第1部分:土建結構工程
- (正式版)JTT 1499-2024 公路水運工程臨時用電技術規(guī)程
評論
0/150
提交評論