山東省濱州市北城英才校2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)
山東省濱州市北城英才校2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)
山東省濱州市北城英才校2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)
山東省濱州市北城英才校2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)
山東省濱州市北城英才校2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省濱州市北城英才校2024年中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列計(jì)算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+12.據(jù)國(guó)土資源部數(shù)據(jù)顯示,我國(guó)是全球“可燃冰”資源儲(chǔ)量最多的國(guó)家之一,海、陸總儲(chǔ)量約為39000000000噸油當(dāng)量,將39000000000用科學(xué)記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1093.計(jì)算(﹣5)﹣(﹣3)的結(jié)果等于()A.﹣8B.8C.﹣2D.24.一個(gè)盒子內(nèi)裝有大小、形狀相同的四個(gè)球,其中紅球1個(gè)、綠球1個(gè)、白球2個(gè),小明摸出一個(gè)球不放回,再摸出一個(gè)球,則兩次都摸到白球的概率是()A. B. C. D.5.如圖,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫(huà)弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.26.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.7.如圖所示,在長(zhǎng)方形紙片ABCD中,AB=32cm,把長(zhǎng)方形紙片沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,AF=25cm,則AD的長(zhǎng)為()A.16cm B.20cm C.24cm D.28cm8.解分式方程﹣3=時(shí),去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=49.如圖,經(jīng)過(guò)測(cè)量,C地在A地北偏東46°方向上,同時(shí)C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°10.黃河是中華民族的象征,被譽(yù)為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢(shì)的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時(shí)作時(shí)間單位,則其年平均流量可用科學(xué)記數(shù)法表示為()A.6.06×104立方米/時(shí) B.3.136×106立方米/時(shí)C.3.636×106立方米/時(shí) D.36.36×105立方米/時(shí)11.如圖,在中,,,,點(diǎn)分別在上,于,則的面積為()A. B. C. D.12.如圖,在中,面積是16,的垂直平分線分別交邊于點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為()A.6 B.8 C.10 D.12二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在x軸的正半軸上依次間隔相等的距離取點(diǎn)A1,A2,A3,A4,…,An,分別過(guò)這些點(diǎn)做x軸的垂線與反比例函數(shù)y=的圖象相交于點(diǎn)P1,P2,P3,P4,…Pn,再分別過(guò)P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_(kāi)____.14.圖1、圖2的位置如圖所示,如果將兩圖進(jìn)行拼接(無(wú)覆蓋),可以得到一個(gè)矩形,請(qǐng)利用學(xué)過(guò)的變換(翻折、旋轉(zhuǎn)、軸對(duì)稱(chēng))知識(shí),將圖2進(jìn)行移動(dòng),寫(xiě)出一種拼接成矩形的過(guò)程______.15.如圖,點(diǎn)是反比例函數(shù)圖像上的兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn),延長(zhǎng)交軸于點(diǎn),已知,,則的值為_(kāi)_________.16.如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號(hào)是(把你認(rèn)為正確的都填上).17.已知二次函數(shù)的圖象如圖所示,若方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是_____________.18.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點(diǎn),過(guò)點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則=______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)校車(chē)安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車(chē)速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車(chē)道l上確定點(diǎn)D,使CD與l垂直,測(cè)得CD的長(zhǎng)等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.求AB的長(zhǎng)(結(jié)果保留根號(hào));已知本路段對(duì)校車(chē)限速為45千米/小時(shí),若測(cè)得某輛校車(chē)從A到B用時(shí)1.5秒,這輛校車(chē)是否超速?說(shuō)明理由.(參考數(shù)據(jù):≈1.7,≈1.4)20.(6分)如圖,在平行四邊形中,的平分線與邊相交于點(diǎn).(1)求證;(2)若點(diǎn)與點(diǎn)重合,請(qǐng)直接寫(xiě)出四邊形是哪種特殊的平行四邊形.21.(6分)已知:如圖,AB=AC,點(diǎn)D是BC的中點(diǎn),AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.22.(8分)如圖,已知在梯形ABCD中,,P是線段BC上一點(diǎn),以P為圓心,PA為半徑的與射線AD的另一個(gè)交點(diǎn)為Q,射線PQ與射線CD相交于點(diǎn)E,設(shè).(1)求證:;(2)如果點(diǎn)Q在線段AD上(與點(diǎn)A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;(3)如果與相似,求BP的長(zhǎng).23.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達(dá)式;(2)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).24.(10分)已知拋物線y=x2﹣(2m+1)x+m2+m,其中m是常數(shù).(1)求證:不論m為何值,該拋物線與z軸一定有兩個(gè)公共點(diǎn);(2)若該拋物線的對(duì)稱(chēng)軸為直線x=,請(qǐng)求出該拋物線的頂點(diǎn)坐標(biāo).25.(10分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.(1)求二次函數(shù)的表達(dá)式;(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形?若存在.請(qǐng)求出點(diǎn)P的坐標(biāo);(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.26.(12分)(2016湖南省株洲市)某市對(duì)初二綜合素質(zhì)測(cè)評(píng)中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評(píng)價(jià)得分由測(cè)試成績(jī)(滿分100分)和平時(shí)成績(jī)(滿分100分)兩部分組成,其中測(cè)試成績(jī)占80%,平時(shí)成績(jī)占20%,并且當(dāng)綜合評(píng)價(jià)得分大于或等于80分時(shí),該生綜合評(píng)價(jià)為A等.(1)孔明同學(xué)的測(cè)試成績(jī)和平時(shí)成績(jī)兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,則孔明同學(xué)測(cè)試成績(jī)和平時(shí)成績(jī)各得多少分?(2)某同學(xué)測(cè)試成績(jī)?yōu)?0分,他的綜合評(píng)價(jià)得分有可能達(dá)到A等嗎?為什么?(3)如果一個(gè)同學(xué)綜合評(píng)價(jià)要達(dá)到A等,他的測(cè)試成績(jī)至少要多少分?27.(12分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長(zhǎng).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解題分析】

解:A.故錯(cuò)誤;B.故錯(cuò)誤;C.正確;D.故選C.【題目點(diǎn)撥】本題考查合并同類(lèi)項(xiàng),同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計(jì)算,掌握運(yùn)算法則正確計(jì)算是解題關(guān)鍵.2、A【解題分析】

用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【題目詳解】39000000000=3.9×1.故選A.【題目點(diǎn)撥】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).3、C【解題分析】分析:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù).依此計(jì)算即可求解.詳解:(-5)-(-3)=-1.故選:C.點(diǎn)睛:考查了有理數(shù)的減法,方法指引:①在進(jìn)行減法運(yùn)算時(shí),首先弄清減數(shù)的符號(hào);②將有理數(shù)轉(zhuǎn)化為加法時(shí),要同時(shí)改變兩個(gè)符號(hào):一是運(yùn)算符號(hào)(減號(hào)變加號(hào));二是減數(shù)的性質(zhì)符號(hào)(減數(shù)變相反數(shù)).4、C【解題分析】

畫(huà)樹(shù)狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【題目詳解】解:畫(huà)樹(shù)狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【題目點(diǎn)撥】本題考查畫(huà)樹(shù)狀圖求概率,掌握樹(shù)狀圖的畫(huà)法準(zhǔn)確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.5、D【解題分析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個(gè)等邊三角形的面積,分別求出即可.【題目詳解】過(guò)A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【題目點(diǎn)撥】本題考查了等邊三角形的性質(zhì)和扇形的面積計(jì)算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個(gè)等邊三角形的面積是解此題的關(guān)鍵.6、B【解題分析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項(xiàng)錯(cuò)誤;B、主視圖為矩形,俯視圖為矩形,故B選項(xiàng)正確;C、主視圖,俯視圖均為圓,故C選項(xiàng)錯(cuò)誤;D、主視圖為矩形,俯視圖為三角形,故D選項(xiàng)錯(cuò)誤.故選:B.7、C【解題分析】

首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對(duì)等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【題目詳解】∵長(zhǎng)方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長(zhǎng)方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【題目點(diǎn)撥】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過(guò)程中注意到相等的角以及相等的線段是關(guān)鍵.8、B【解題分析】

方程兩邊同時(shí)乘以(x-2),轉(zhuǎn)化為整式方程,由此即可作出判斷.【題目詳解】方程兩邊同時(shí)乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.【題目點(diǎn)撥】本題考查了解分式方程,利用了轉(zhuǎn)化的思想,熟練掌握解分式方程的一般步驟以及注意事項(xiàng)是解題的關(guān)鍵.9、B【解題分析】

方向角是從正北或正南方向到目標(biāo)方向所形成的小于90°的角,根據(jù)平行線的性質(zhì)求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【題目詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質(zhì)可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【題目點(diǎn)撥】本題考查了方位角和平行線的性質(zhì),熟練掌握方位角的概念和平行線的性質(zhì)是解題的關(guān)鍵.10、C【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【題目詳解】1010×360×24=3.636×106立方米/時(shí),故選C.【題目點(diǎn)撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.11、C【解題分析】

先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進(jìn)而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結(jié)論;【題目詳解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如圖2,過(guò)點(diǎn)P作PE⊥BC于E,

在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【題目點(diǎn)撥】本題是相似形綜合題,主要考查了相似三角形的判定和性質(zhì),三角形的面積的計(jì)算方法,判斷出△ACQ∽△CEP是解題的關(guān)鍵.12、C【解題分析】

連接AD,AM,由于△ABC是等腰三角形,點(diǎn)D是BC的中點(diǎn),故,在根據(jù)三角形的面積公式求出AD的長(zhǎng),再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)A關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)為點(diǎn)C,,推出,故AD的長(zhǎng)為BM+MD的最小值,由此即可得出結(jié)論.【題目詳解】連接AD,MA∵△ABC是等腰三角形,點(diǎn)D是BC邊上的中點(diǎn)∴∴解得∵EF是線段AC的垂直平分線∴點(diǎn)A關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)為點(diǎn)C∴∵∴AD的長(zhǎng)為BM+MD的最小值∴△CDM的周長(zhǎng)最短故選:C.【題目點(diǎn)撥】本題考查了三角形線段長(zhǎng)度的問(wèn)題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解題分析】

解:設(shè)OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵當(dāng)x=a時(shí),,∴P1的坐標(biāo)為(a,),當(dāng)x=2a時(shí),,∴P2的坐標(biāo)為(2a,),……∴Rt△P1B1P2的面積為,Rt△P2B2P3的面積為,Rt△P3B3P4的面積為,……∴Rt△Pn-1Bn-1Pn的面積為.故答案為:14、先將圖2以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),再將旋轉(zhuǎn)后的圖形向左平移5個(gè)單位.【解題分析】

變換圖形2,可先旋轉(zhuǎn),然后平移與圖2拼成一個(gè)矩形.【題目詳解】先將圖2以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°,再將旋轉(zhuǎn)后的圖形向左平移5個(gè)單位可以與圖1拼成一個(gè)矩形.故答案為:先將圖2以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°,再將旋轉(zhuǎn)后的圖形向左平移5個(gè)單位.【題目點(diǎn)撥】本題考查了平移和旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.15、【解題分析】

過(guò)點(diǎn)B作BF⊥OC于點(diǎn)F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因?yàn)椋?,,又因?yàn)锳D∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因?yàn)镾△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【題目詳解】解:過(guò)點(diǎn)B作BF⊥OC于點(diǎn)F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【題目點(diǎn)撥】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運(yùn)用相似三角形的判定定理和性質(zhì)定理.16、①②④【解題分析】分析:∵四邊形ABCD是正方形,∴AB=AD?!摺鰽EF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)?!郆E=DF?!連C=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①說(shuō)法正確?!逤E=CF,∴△ECF是等腰直角三角形?!唷螩EF=45°。∵∠AEF=60°,∴∠AEB=75°?!啖谡f(shuō)法正確。如圖,連接AC,交EF于G點(diǎn),∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG?!郆E+DF≠EF?!啖壅f(shuō)法錯(cuò)誤。∵EF=2,∴CE=CF=。設(shè)正方形的邊長(zhǎng)為a,在Rt△ADF中,,解得,∴。∴?!啖苷f(shuō)法正確。綜上所述,正確的序號(hào)是①②④。17、【解題分析】分析:先移項(xiàng),整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開(kāi)口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點(diǎn)睛:本題主要考查了拋物線與x軸的交點(diǎn)問(wèn)題,以及數(shù)形結(jié)合法;二次函數(shù)中當(dāng)b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn).18、3﹣【解題分析】

首先設(shè)點(diǎn)B的橫坐標(biāo),由點(diǎn)B在拋物線y1=x2(x≥0)上,得出點(diǎn)B的坐標(biāo),再由平行,得出A和C的坐標(biāo),然后由CD平行于y軸,得出D的坐標(biāo),再由DE∥AC,得出E的坐標(biāo),即可得出DE和AB,進(jìn)而得解.【題目詳解】設(shè)點(diǎn)B的橫坐標(biāo)為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【題目點(diǎn)撥】此題主要考查拋物線中的坐標(biāo)求解,關(guān)鍵是利用平行的性質(zhì).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1);(2)此校車(chē)在AB路段超速,理由見(jiàn)解析.【解題分析】

(1)結(jié)合三角函數(shù)的計(jì)算公式,列出等式,分別計(jì)算AD和BD的長(zhǎng)度,計(jì)算結(jié)果,即可.(2)在第一問(wèn)的基礎(chǔ)上,結(jié)合時(shí)間關(guān)系,計(jì)算速度,判斷,即可.【題目詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車(chē)從A到B用時(shí)1.5秒,所以速度為16÷1.5≈18.1(米/秒),因?yàn)?8.1(米/秒)=65.2千米/時(shí)>45千米/時(shí),所以此校車(chē)在AB路段超速.【題目點(diǎn)撥】考查三角函數(shù)計(jì)算公式,考查速度計(jì)算方法,關(guān)鍵利用正切值計(jì)算方法,計(jì)算結(jié)果,難度中等.20、(1)見(jiàn)解析;(2)菱形.【解題分析】

(1)根據(jù)角平分線的性質(zhì)可得∠ADE=∠CDE,再由平行線的性質(zhì)可得AB∥CD,易得AD=AE,從而可證得結(jié)論;(2)若點(diǎn)與點(diǎn)重合,可證得AD=AB,根據(jù)鄰邊相等的平行四邊形是菱形即可作出判斷.【題目詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點(diǎn)E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),菱形的性質(zhì),熟練掌握各知識(shí)是解題的關(guān)鍵.21、見(jiàn)解析【解題分析】試題分析:證明簡(jiǎn)單的線段相等,可證線段所在的三角形全等,結(jié)合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點(diǎn)D是BC的中點(diǎn),∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.22、(1)見(jiàn)解析;(2);(3)當(dāng)或8時(shí),與相似.【解題分析】

(1)想辦法證明即可解決問(wèn)題;(2)作A于M,于N.則四邊形AMPN是矩形.想辦法求出AQ、PN的長(zhǎng)即可解決問(wèn)題;(3)因?yàn)椋?,又,推出,推出相似時(shí),與相似,分兩種情形討論即可解決問(wèn)題;【題目詳解】(1)證明:四邊形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.則四邊形是矩形.在中,,,,,,.(3)解:,,,相似時(shí),與相似,,當(dāng)時(shí),,此時(shí),當(dāng)時(shí),,此時(shí),綜上所述,當(dāng)PB=5或8時(shí),與△相似.【題目點(diǎn)撥】本題考查幾何綜合題、圓的有關(guān)性質(zhì)、等腰梯形的性質(zhì),銳角三角函數(shù)、相似三角形的判定和性質(zhì)、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問(wèn)題,學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形和特殊四邊形解決問(wèn)題,屬于中考?jí)狠S題.23、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到(1,1)時(shí),四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解題分析】試題分析:(1)將點(diǎn)A、C的坐標(biāo)分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對(duì)稱(chēng)軸方程,由勾股定理求出CD的值,以點(diǎn)C為圓心,CD為半徑作弧交對(duì)稱(chēng)軸于P1;以點(diǎn)D為圓心CD為半徑作圓交對(duì)稱(chēng)軸于點(diǎn)P1,P3;作CH垂直于對(duì)稱(chēng)軸與點(diǎn)H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點(diǎn)的坐標(biāo),從而可求出BC的解析式,從而可設(shè)設(shè)E點(diǎn)的坐標(biāo),進(jìn)而可表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過(guò)A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對(duì)稱(chēng)軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當(dāng)y=0時(shí),0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過(guò)點(diǎn)C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時(shí),S四邊形CDBF的面積最大=,∴E(1,1).考點(diǎn):1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值24、(1)見(jiàn)解析;(2)頂點(diǎn)為(,﹣)【解題分析】

(1)根據(jù)題意,由根的判別式△=b2﹣4ac>0得到答案;(2)結(jié)合題意,根據(jù)對(duì)稱(chēng)軸x=﹣得到m=2,即可得到拋物線解析式為y=x2﹣5x+6,再將拋物線解析式為y=x2﹣5x+6變形為y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.【題目詳解】(1)證明:a=1,b=﹣(2m+1),c=m2+m,∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,∴拋物線與x軸有兩個(gè)不相同的交點(diǎn).(2)解:∵y=x2﹣(2m+1)x+m2+m,∴對(duì)稱(chēng)軸x=﹣==,∵對(duì)稱(chēng)軸為直線x=,∴=,解得m=2,∴拋物線解析式為y=x2﹣5x+6,∵y=x2﹣5x+6=(x﹣)2﹣,∴頂點(diǎn)為(,﹣).【題目點(diǎn)撥】本題考查根的判別式、對(duì)稱(chēng)軸和頂點(diǎn),解題的關(guān)鍵是掌握根的判別式、對(duì)稱(chēng)軸和頂點(diǎn)的計(jì)算和使用.25、(1)二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時(shí),△MNB面積最大,最大面積是1.此時(shí)點(diǎn)N在對(duì)稱(chēng)軸上x(chóng)軸上方2個(gè)單位處或點(diǎn)N在對(duì)稱(chēng)軸上x(chóng)軸下方2個(gè)單位處.【解題分析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達(dá)式;(2)先求出點(diǎn)B的坐標(biāo),再根據(jù)勾股定理求得BC的長(zhǎng),當(dāng)△PBC為等腰三角形時(shí)分三種情況進(jìn)行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點(diǎn)P的坐標(biāo);(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論