陜西省咸陽(yáng)市2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁(yè)
陜西省咸陽(yáng)市2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁(yè)
陜西省咸陽(yáng)市2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁(yè)
陜西省咸陽(yáng)市2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁(yè)
陜西省咸陽(yáng)市2024屆中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省咸陽(yáng)市2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.關(guān)于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.22.如圖,平行四邊形ABCD的頂點(diǎn)A、B、D在⊙O上,頂點(diǎn)C在⊙O直徑BE上,連結(jié)AE,若∠E=36°,則∠ADC的度數(shù)是()A.44° B.53° C.72° D.54°3.二元一次方程組的解是()A. B. C. D.4.在正方體的表面上畫(huà)有如圖1中所示的粗線(xiàn),圖2是其展開(kāi)圖的示意圖,但只在A(yíng)面上畫(huà)有粗線(xiàn),那么將圖1中剩余兩個(gè)面中的粗線(xiàn)畫(huà)入圖2中,畫(huà)法正確的是()A. B. C. D.5.方程組的解x、y滿(mǎn)足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>6.甲、乙兩輛汽車(chē)沿同一路線(xiàn)從A地前往B地,甲車(chē)以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車(chē)維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙車(chē)在甲車(chē)出發(fā)2小時(shí)后勻速前往B地,比甲車(chē)早30分鐘到達(dá).到達(dá)B地后,乙車(chē)按原速度返回A地,甲車(chē)以2a千米/時(shí)的速度返回A地.設(shè)甲、乙兩車(chē)與A地相距s(千米),甲車(chē)離開(kāi)A地的時(shí)間為t(小時(shí)),s與t之間的函數(shù)圖象如圖所示.下列說(shuō)法:①a=40;②甲車(chē)維修所用時(shí)間為1小時(shí);③兩車(chē)在途中第二次相遇時(shí)t的值為5.25;④當(dāng)t=3時(shí),兩車(chē)相距40千米,其中不正確的個(gè)數(shù)為()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)7.如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點(diǎn)B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點(diǎn)順時(shí)針旋轉(zhuǎn)180°,然后再向下平移2個(gè)單位,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)8.已知,如圖,AB是⊙O的直徑,點(diǎn)D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°9.如圖,AB∥CD,E為CD上一點(diǎn),射線(xiàn)EF經(jīng)過(guò)點(diǎn)A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°10.如圖,AD∥BE∥CF,直線(xiàn)l1,l2與這三條平行線(xiàn)分別交于點(diǎn)A,B,C和點(diǎn)D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長(zhǎng)為()A.4 B..5 C.6 D.8二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.釣魚(yú)島是中國(guó)的固有領(lǐng)土,位于中國(guó)東海,面積約4400000平方米,數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為_(kāi)_____.12.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),菱形OABC的對(duì)角線(xiàn)OB在x軸上,頂點(diǎn)A在反比例函數(shù)y=的圖象上,則菱形的面積為_(kāi)____.13.若點(diǎn)A(1,m)在反比例函數(shù)y=的圖象上,則m的值為_(kāi)_______.14.如圖,將周長(zhǎng)為8的△ABC沿BC方向向右平移1個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為.15.在一個(gè)不透明的口袋中,有3個(gè)紅球、2個(gè)黃球、一個(gè)白球,它們除顏色不同之外其它完全相同,現(xiàn)從口袋中隨機(jī)摸出一個(gè)球記下顏色后放回,再隨機(jī)摸出一個(gè)球,則兩次摸到一個(gè)紅球和一個(gè)黃球的概率是_____.16.下圖是在正方形網(wǎng)格中按規(guī)律填成的陰影,根據(jù)此規(guī)律,則第n個(gè)圖中陰影部分小正方形的個(gè)數(shù)是.17.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點(diǎn)E,△BDE是等邊三角形,若AD=4,則線(xiàn)段BE的長(zhǎng)為_(kāi)_____.三、解答題(共7小題,滿(mǎn)分69分)18.(10分)如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長(zhǎng).19.(5分)計(jì)算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷220.(8分)某中學(xué)采用隨機(jī)的方式對(duì)學(xué)生掌握安全知識(shí)的情況進(jìn)行測(cè)評(píng),并按成績(jī)高低分成優(yōu)、良、中、差四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)有關(guān)信息解答:(1)接受測(cè)評(píng)的學(xué)生共有________人,扇形統(tǒng)計(jì)圖中“優(yōu)”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)_______°,并補(bǔ)全條形統(tǒng)計(jì)圖;(2)若該校共有學(xué)生1200人,請(qǐng)估計(jì)該校對(duì)安全知識(shí)達(dá)到“良”程度的人數(shù);(3)測(cè)評(píng)成績(jī)前五名的學(xué)生恰好3個(gè)女生和2個(gè)男生,現(xiàn)從中隨機(jī)抽取2人參加市安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出抽到1個(gè)男生和1個(gè)女生的概率.21.(10分)問(wèn)題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問(wèn)題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;問(wèn)題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線(xiàn)段AC的長(zhǎng)是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過(guò)點(diǎn)A作⊙O的切線(xiàn)交OC的延長(zhǎng)線(xiàn)于點(diǎn)D,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.(1)求證:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的長(zhǎng).23.(12分)今年5月份,某校九年級(jí)學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計(jì)圖(圖11-2),根據(jù)圖表中的信息解答下列問(wèn)題:分組

分?jǐn)?shù)段(分)

頻數(shù)

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學(xué)生人數(shù)和m的值;(2)直接學(xué)出該班學(xué)生的中考體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段;(3)該班中考體育成績(jī)滿(mǎn)分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出恰好選到一男一女的概率.24.(14分)先化簡(jiǎn),再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、D【解題分析】

解不等式得到x≥m+3,再列出關(guān)于m的不等式求解.【題目詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關(guān)于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點(diǎn):不等式的解集2、D【解題分析】

根據(jù)直徑所對(duì)的圓周角為直角可得∠BAE=90°,再根據(jù)直角三角形的性質(zhì)和平行四邊形的性質(zhì)可得解.【題目詳解】根據(jù)直徑所對(duì)的圓周角為直角可得∠BAE=90°,根據(jù)∠E=36°可得∠B=54°,根據(jù)平行四邊形的性質(zhì)可得∠ADC=∠B=54°.故選D【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì)、圓的基本性質(zhì).3、B【解題分析】

利用加減消元法解二元一次方程組即可得出答案【題目詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.【題目點(diǎn)撥】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.4、A【解題分析】

解:可把A、B、C、D選項(xiàng)折疊,能夠復(fù)原(1)圖的只有A.故選A.5、B【解題分析】

方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【題目詳解】①+②得:解得:故選:B.【題目點(diǎn)撥】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.6、A【解題分析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車(chē)維修的時(shí)間為1小時(shí);故②正確,③如圖:∵甲車(chē)維修的時(shí)間是1小時(shí),∴B(4,120).∵乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時(shí)間為:240÷80=3,∴F(8,0).設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當(dāng)y1=y2時(shí),80t﹣200=﹣80t+640,t=5.2.∴兩車(chē)在途中第二次相遇時(shí)t的值為5.2小時(shí),故弄③正確,④當(dāng)t=3時(shí),甲車(chē)行的路程為:120km,乙車(chē)行的路程為:80×(3﹣2)=80km,∴兩車(chē)相距的路程為:120﹣80=40千米,故④正確,故選A.7、D【解題分析】解:作AD⊥BC,并作出把Rt△ABC先繞B點(diǎn)順時(shí)針旋轉(zhuǎn)180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點(diǎn)B坐標(biāo)為(1,0),∴A點(diǎn)的坐標(biāo)為(4,).∵BD=1,∴BD1=1,∴D1坐標(biāo)為(﹣2,0),∴A1坐標(biāo)為(﹣2,﹣).∵再向下平移2個(gè)單位,∴A′的坐標(biāo)為(﹣2,﹣﹣2).故選D.點(diǎn)睛:本題主要考查了直角三角形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì),作出圖形利用旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)是解答此題的關(guān)鍵.8、B【解題分析】因?yàn)锳B是⊙O的直徑,所以求得∠ADB=90°,進(jìn)而求得∠B的度數(shù),又因?yàn)椤螧=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對(duì)的圓周角相等).

故選B.

9、D【解題分析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點(diǎn)睛:本題考查的是平行線(xiàn)的性質(zhì),熟知兩直線(xiàn)平行,同位角相等是解答此題的關(guān)鍵.10、C【解題分析】

解:∵AD∥BE∥CF,根據(jù)平行線(xiàn)分線(xiàn)段成比例定理可得,即,解得EF=6,故選C.二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、

【解題分析】試題分析:將4400000用科學(xué)記數(shù)法表示為:4.4×1.故答案為4.4×1.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).12、1【解題分析】

連接AC交OB于D,由菱形的性質(zhì)可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【題目詳解】連接AC交OB于D.

四邊形OABC是菱形,

點(diǎn)A在反比例函數(shù)的圖象上,

的面積,

菱形OABC的面積=的面積=1.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是菱形的性質(zhì)及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關(guān)鍵是反比例函數(shù)圖象上的點(diǎn)與原點(diǎn)所連的線(xiàn)段、坐標(biāo)軸、向坐標(biāo)軸作垂線(xiàn)所圍成的直角三角形面積S的關(guān)系,即.13、3【解題分析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.14、1.【解題分析】試題解析:根據(jù)題意,將周長(zhǎng)為8的△ABC沿邊BC向右平移1個(gè)單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長(zhǎng)=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點(diǎn):平移的性質(zhì).15、【解題分析】

先畫(huà)樹(shù)狀圖展示所有36種等可能的結(jié)果數(shù),再找出兩次摸到一個(gè)紅球和一個(gè)黃球的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】畫(huà)樹(shù)狀圖如下:由樹(shù)狀圖可知,共有36種等可能結(jié)果,其中兩次摸到一個(gè)紅球和一個(gè)黃球的結(jié)果數(shù)為12,所以?xún)纱蚊揭粋€(gè)紅球和一個(gè)黃球的概率為,故答案為.【題目點(diǎn)撥】本題考查了列表法或樹(shù)狀圖法:通過(guò)列表法或樹(shù)狀圖法展示所有等可能的結(jié)果求出n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.16、n1+n+1.【解題分析】試題解析:仔細(xì)觀(guān)察圖形知道:每一個(gè)陰影部分由左邊的正方形和右邊的矩形構(gòu)成,分別為:第一個(gè)圖有:1+1+1個(gè),第二個(gè)圖有:4+1+1個(gè),第三個(gè)圖有:9+3+1個(gè),…第n個(gè)為n1+n+1.考點(diǎn):規(guī)律型:圖形的變化類(lèi).17、1【解題分析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,∠BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據(jù)三角形內(nèi)角和定理得出關(guān)系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結(jié)論.【題目詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【題目點(diǎn)撥】本題主要考查等腰三角形的性質(zhì)及等邊三角形的性質(zhì)及垂直定義,解題的關(guān)鍵是根據(jù)三角形內(nèi)角和定理列出符合題意的簡(jiǎn)易方程,從而求出結(jié)果.三、解答題(共7小題,滿(mǎn)分69分)18、(1);(2)詳見(jiàn)解析;(3)AE=.【解題分析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問(wèn)題,求得AE的長(zhǎng).【題目詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過(guò)點(diǎn)O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時(shí),S△BEF+S△COF最大;即在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),【題目點(diǎn)撥】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問(wèn)題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.19、【解題分析】

按照實(shí)數(shù)的運(yùn)算順序進(jìn)行運(yùn)算即可.【題目詳解】解:原式【題目點(diǎn)撥】本題考查實(shí)數(shù)的運(yùn)算,主要考查零次冪,負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.20、(1)80,135°,條形統(tǒng)計(jì)圖見(jiàn)解析;(2)825人;(3)圖表見(jiàn)解析,(抽到1男1女).【解題分析】試題分析:(1)、根據(jù)“中”的人數(shù)和百分比得出總?cè)藬?shù),然后求出優(yōu)所占的百分比,得出圓心角的度數(shù);(2)、根據(jù)題意得出“良”和“優(yōu)”兩種所占的百分比,從而得出全校的總數(shù);(3)、根據(jù)題意利用列表法或者樹(shù)狀圖法畫(huà)出所有可能出現(xiàn)的情況,然后根據(jù)概率的計(jì)算法則求出概率.試題解析:(1)80,135°;條形統(tǒng)計(jì)圖如圖所示(2)該校對(duì)安全知識(shí)達(dá)到“良”程度的人數(shù):(人)(3)解法一:列表如下:所有等可能的結(jié)果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).女1女2女3男1男2女1---女2女1女3女1男1女1男2女1女2女1女2---女3女2男1女2男2女2女3女1女3女2女3---男1女3男2女3男1女1男1女2男1女3男1---男2男1男2女1男2女2男2女3男2男1男2---解法二:畫(huà)樹(shù)狀圖如下:所有等可能的結(jié)果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).21、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解題分析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問(wèn)題;(2)如圖2中,作AH⊥BC于H.當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線(xiàn)段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短;(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長(zhǎng)線(xiàn)于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問(wèn)題.【題目詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線(xiàn)段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短,如圖2﹣1中,當(dāng)AD⊥BC時(shí),作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長(zhǎng)線(xiàn)于H,設(shè)BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時(shí),AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當(dāng)x=﹣=1時(shí),EC的長(zhǎng)最小,此時(shí)EC=18,∴AC=EC=9,∴AC的最小值為9.【題目點(diǎn)撥】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問(wèn)題,屬于中考?jí)狠S題.22、(1)證明見(jiàn)解析;(2).【解題分析】

(1)由切線(xiàn)的性質(zhì)可知∠DAB=90°,由直角所對(duì)的圓周為90°可知∠ACB=90°,根據(jù)同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性質(zhì)可知∠B=∠OCB,由對(duì)頂角的性質(zhì)可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)題意可知AO=1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論