版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆天津市河東區(qū)天鐵一中學初中數學畢業(yè)考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形2.如圖,是直角三角形,,,點在反比例函數的圖象上.若點在反比例函數的圖象上,則的值為()A.2 B.-2 C.4 D.-43.小穎隨機抽樣調查本校20名女同學所穿運動鞋尺碼,并統(tǒng)計如表:尺碼/cm21.522.022.523.023.5人數24383學校附近的商店經理根據統(tǒng)計表決定本月多進尺碼為23.0cm的女式運動鞋,商店經理的這一決定應用的統(tǒng)計量是()A.平均數 B.加權平均數 C.眾數 D.中位數4.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=6.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.7.若一組數據2,3,4,5,x的平均數與中位數相等,則實數x的值不可能是()A.6 B.3.5 C.2.5 D.18.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現需降價處理,為占有市場份額,且經市場調查:每降價元,每星期可多賣出件.現在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.59.已知反比例函數y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣210.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π二、填空題(共7小題,每小題3分,滿分21分)11.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.12.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.13.據統(tǒng)計,今年無錫黿頭渚“櫻花節(jié)”活動期間入園賞櫻人數約803萬人次,用科學記數法可表示為_____人次.14.若關于x的一元二次方程x2﹣2x+m=0有實數根,則m的取值范圍是.15.如圖,點A、B、C是⊙O上的點,且∠ACB=40°,陰影部分的面積為2π,則此扇形的半徑為______.16.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時間x(時)的函數的圖象,請問當小明到達B地時,小亮距離A地_____千米.17.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.三、解答題(共7小題,滿分69分)18.(10分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)19.(5分)某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.(1)求A、B兩種鋼筆每支各多少元?(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數量少于B種鋼筆的數量,那么該文具店有哪幾種購買方案?(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎上再購進一批B種鋼筆,漲價賣出,經統(tǒng)計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設文具店將新購進的B種鋼筆每支漲價a元(a為正整數),銷售這批鋼筆每月獲利W元,試求W與a之間的函數關系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?20.(8分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.21.(10分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.22.(10分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數繪制成如圖所示的折線統(tǒng)計圖.(1)根據圖中所給信息填寫下表:投中個數統(tǒng)計平均數中位數眾數A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.23.(12分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?24.(14分)如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關于y軸對稱的△A1B1C1;以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
根據平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【題目詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【題目點撥】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵2、D【解題分析】
要求函數的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據條件得到,得到:,然后用待定系數法即可.【題目詳解】過點、作軸,軸,分別于、,設點的坐標是,則,,,,,,,,,,,,因為點在反比例函數的圖象上,則,點在反比例函數的圖象上,點的坐標是,.故選:.【題目點撥】本題考查了反比例函數圖象上點的坐標特征,相似三角形的判定與性質,求函數的解析式的問題,一般要轉化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數的解析式.3、C【解題分析】
根據眾數是一組數據中出現次數最多的數,可能不止一個,對這個鞋店的經理來說,他最關注的是數據的眾數.【題目詳解】解:根據商店經理統(tǒng)計表決定本月多進尺碼為23.0cm的女式運動鞋,就說明穿23.0cm的女式運動鞋的最多,
則商店經理的這一決定應用的統(tǒng)計量是這組數據的眾數.
故選:C.【題目點撥】此題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的平均數、中位數、眾數各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當的運用.4、C【解題分析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【題目點撥】本題考查平行線的判定,難度不大.5、D【解題分析】【分析】直接利用根與系數的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數的性質得到x1、x2異號,且負數的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【題目詳解】根據題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【題目點撥】本題考查了一元二次方程的解、一元二次方程根與系數的關系,熟練掌握相關內容是解題的關鍵.6、D【解題分析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.7、C【解題分析】
因為中位數的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到小)排列在中間;結尾;開始的位置.【題目詳解】(1)將這組數據從小到大的順序排列為2,3,4,5,x,
處于中間位置的數是4,
∴中位數是4,
平均數為(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列順序;
(2)將這組數據從小到大的順序排列后2,3,4,x,5,
中位數是4,
此時平均數是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列順序;
(3)將這組數據從小到大的順序排列后2,3,x,4,5,
中位數是x,
平均數(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列順序;
(4)將這組數據從小到大的順序排列后2,x,3,4,5,
中位數是3,
平均數(2+3+4+5+x)÷5=3,
解得x=1,不符合排列順序;
(5)將這組數據從小到大的順序排列后x,2,3,4,5,
中位數是3,
平均數(2+3+4+5+x)÷5=3,
解得x=1,符合排列順序;
∴x的值為6、3.5或1.
故選C.【題目點撥】考查了確定一組數據的中位數,涉及到分類討論思想,較難,要明確中位數的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數.如果數據有奇數個,則正中間的數字即為所求;如果是偶數個,則找中間兩位數的平均數.8、A【解題分析】
設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現在可以賣出[300+20(60-x)]件,然后根據盈利為6120元即可列出方程解決問題.【題目詳解】解:設售價為x元時,每星期盈利為6120元,
由題意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.
∴每件商品應降價60-57=3元.
故選:A.【題目點撥】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.9、D【解題分析】
根據反比例函數的性質可以求得y的取值范圍,從而可以解答本題.【題目詳解】解:∵反比例函數y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【題目點撥】本題考查了反比例函數的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數的性質解答.10、D【解題分析】
點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【題目詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【題目點撥】本題考查了矩形的性質、特殊角的三角函數值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】
根據概率的計算方法求解即可.【題目詳解】∵第4次拋擲一枚均勻的硬幣時,正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【題目點撥】此題考查了概率公式的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.12、y=(x﹣1)2+【解題分析】
直接利用拋物線與坐標軸交點求法結合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【題目詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.【題目點撥】此題主要考查了拋物線與坐標軸交點求法以及二次函數的平移,正確得出平移方向和距離是解題關鍵.13、8.03×106【解題分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.803萬=.14、m≤1.【解題分析】試題分析:由題意知,△=4﹣4m≥0,∴m≤1.故答案為m≤1.考點:根的判別式.15、3【解題分析】
根據圓周角定理可求出∠AOB的度數,設扇形半徑為x,從而列出關于x的方程,求出答案.【題目詳解】由題意可知:∠AOB=2∠ACB=2×40°=80°,設扇形半徑為x,故陰影部分的面積為πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合題意,舍去),故答案為3.【題目點撥】本題主要考查了圓周角定理以及扇形的面積求解,解本題的要點在于根據題意列出關于x的方程,從而得到答案.16、1【解題分析】
根據題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【題目詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【題目點撥】此題考查一次函數的應用,解題關鍵在于列出方程組.17、2【解題分析】
連接OC,根據勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結論.【題目詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【題目點撥】本題考查切線的性質、等腰三角形的性質、等邊三角形的判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.三、解答題(共7小題,滿分69分)18、見解析【解題分析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;
應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS),
∴BE=DG.應用:∵四邊形ABCD為菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.19、(1)A種鋼筆每只15元B種鋼筆每只20元;(2)方案有兩種,一方案為:購進A種鋼筆43支,購進B種鋼筆為47支方案二:購進A種鋼筆44支,購進B種鋼筆46支;(3)定價為33元或34元,最大利潤是728元.【解題分析】(1)設A種鋼筆每只x元,B種鋼筆每支y元,由題意得,解得:,答:A種鋼筆每只15元,B種鋼筆每支20元;(2)設購進A種鋼筆z支,由題意得:,∴42.4≤z<45,∵z是整數z=43,44,∴90-z=47,或46;∴共有兩種方案:方案一:購進A種鋼筆43支,購進B種鋼筆47支,方案二:購進A種鋼筆44只,購進B種鋼筆46只;(3)W=(30-20+a)(68-4a)=-4a2+28a+680=-4(a-)2+729,∵-4<0,∴W有最大值,∵a為正整數,∴當a=3,或a=4時,W最大,∴W最大==-4×(3-)2+729=728,30+a=33,或34;答:B種鉛筆銷售單價定為33元或34元時,每月獲利最大,最大利潤是728元.20、詳見解析.【解題分析】
先證明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根據∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【題目詳解】證明:∵四邊形ABCD是正方形,∴AD=DC,∵E、F分別是AB、BC邊的中點,∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.【題目點撥】本題主要考查正方形的性質、全等三角形的判定和性質,關鍵是要靈活運用全等三角形的判定方法.21、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解題分析】
(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數的解析式;(2)首先延長PE交x軸于點H,現將解析式換為頂點解析式求得D(1,4),設直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據題意在(2)的條件下先證明△DQT≌△ECH,再根據全等三角形的性質即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【題目詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【題目點撥】本題考查了二次函數的綜合題,解題的關鍵是熟練的掌握二次函數的相關知識點.22、(1)7,9,7;(2)應該
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 訂購土豆協議書范文
- 沿海皮帶船轉讓協議書范文模板
- 家庭成員達成一致協議書范文
- 三輪車車子出售轉讓協議書范文
- 協議書范文雙方簽名位置不一致
- 八年級數學上學期期中試題(含解析)
- 公共管理學試題答案
- 2020年全國“質量月”活動企業(yè)員工全面質量管理知識競賽完整題庫及答案
- 2023-2024學年云南省楚雄市重點中學高考總復習小題量基礎周周考數學試題
- 寵美科技應用解析-選對技術提升寵物美容服務
- 大學生創(chuàng)新創(chuàng)業(yè)(微課版第3版)課件 第9、10章 初創(chuàng)企業(yè)的營銷管理、初創(chuàng)企業(yè)的財務管理
- 04.第四講 堅持以人民為中心
- 第三單元多文本閱讀教學 統(tǒng)編版語文九年級上冊
- 鮮花店面租賃合同
- 干部試用期滿轉正談話會講話材料【八篇】
- jgd280同步控制器使用說明
- 重體力勞動管理程序(51版)
- 腦梗死臨床治愈標準
- 2023年上海市高考日語試卷試題及答案詳解(含作文3)
- 電梯維修保養(yǎng)總體施工方案
- 新聞評論-第五章新聞評論的選題技巧課件
評論
0/150
提交評論