傳感器SRM驅(qū)動器中英文對照外文翻譯文獻_第1頁
傳感器SRM驅(qū)動器中英文對照外文翻譯文獻_第2頁
傳感器SRM驅(qū)動器中英文對照外文翻譯文獻_第3頁
傳感器SRM驅(qū)動器中英文對照外文翻譯文獻_第4頁
傳感器SRM驅(qū)動器中英文對照外文翻譯文獻_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

中英文對照翻譯ASimpleExcitationPositionDetectionMethodforSensorlessSRMDriveAcknowledgementsTheresearchforthispaperwasperformedinDr.G.Schr?der’slaboratoryduringMr.Kim’s2006summerinternprogramofSiegenUniversity,Germany.TheauthorsthankKRF(KoreaResearchFoundation)forsupportingtheprogram.Keywords?SwitchedReluctanceDrive?,?SensorlessControl?AbstractThispaperdescribesasimplifiednovelsensorlesscontrolofanSRMbydetectingacurrentlevelduringthenon-excitationperiod.Sincetheinductanceofthemotorisafunctionoftherotorposition,asimpledetectingcurrentpulsecausedbyaregulatedpulsevoltagegivesinformationontherotorposition.Inthispaper,asmalldetectingpulsecurrentiscomparedtothepresetcurrentlevelswhichareproportionaltoturn-onandturn-offpositions.Andthecomparisonresultsareusedfortheexcitationofthenextphase.Thesuggestedmethodisverifiedbysomesimulationsandexperimentaltests.IntroductionAswitchedreluctancemotor(hereinafterreferredtoasan“SRM”)isapowerdrivedevicewhichcanbeeasilyandinexpensivelymanufactured,andithasrelativelyhighreliabilitysinceitisproofagainstcertaindrivefaults.Hence,anSRMdrivesystemhassomecharacteristicscomparablewithanexistinginductionmotorinviewofhightorque,ahighoutputdensity,ahigh-efficientvariablespeeddrive,andaneconomicpowerinverterinapplicationfieldssuchasindustrialmachinery,airplanes,automobiles,consumerdevices,andothers[1-2].InthecontrolofanSRM,onaccurateinformationofrotorpositionisessentialforcorrectphasewindingexcitation.Sincetheoutputtorqueisdependentontheexcitationperiodandexcitedphasecurrent,theaccuracyoftherotorpositionisveryimportant.Inageneralspeedcontrolsystem,anopticalencoderiswidelyusedfordetectingoftherotorposition.Recently,sensorlesscontrolandpositiondetectingtechniquesareinterestinginpracticalapplicationsduetoproblemsofopticalencoderinharshenvironmentandcost.Inordertogetasensorlessrotorposition,mathematicalbasedobserversandfluxdetectingmethodsareused[3-6].Sincetheaccuracyoftheestimatedrotorpositionofanobserverisdependentonthemathematicalmodelandelectricalparameters,theestimationerrorislargeinthelowspeedrange.Anditisverydifficulttogettherotorpositioninstandstill.Althoughthefluxdetectingmethodcaneasilyestimatetherotorpositionwithoutanycomplexmathematicalmodel,alook-uptableoffluxandrotorpositionisrequired.Andtherelationshipoffluxandrotorpositionhasnon-linearcharacteristicduetothesaturationeffect.Recently,fuzzylogicandANN(ArtificialNeuralNetworks)havebeenusedinspeedestimation[7-8]Thispaperpresentsasimplifiednovelapproachofsensorlesscontrolwithoutacomplexcalculationoftherotorpositionfromtheestimatedinductance.Sincetheoutputtorqueisdependentonexcitationpositionandexcitedcurrent,theproposedsensorlessschemedeterminestheexcitationpatternonlyfromthedetectingcurrentinanon-excitedphasewindingduringthedetectingperiod.Theturn-onandturn-offpositionsaredeterminedbythedetectingphasecurrentlevelsthatareinverse-proportionaltorotorpositioninthedetectingperiodofthepreviouslyexcitedphase.Inordertogetalinearrelationshipbetweenrotorpositionanddetectedphasecurrent,ashorttestvoltageisappliedduringthedetectingperiod.Sincetheproposedsensorlessschemedoesnotuseacomplexinductancecalculation,theexcitationpatterncanbeeasilydeterminedbyasimplecomparator.Thesuggestedmethodisverifiedbysomesimulationsandexperimentaltests.TheGeneralPrinciplesofSRMFig.1showsanSRdrivesystemanditstorquecharacteristics.IntheFig.1,theoutputtorqueisproducedintheinductancevariationregionshowninFig.1(b).(a)SRdrivesystem(b)TorquecharacteristicswithconstantcurrentFig.1:SRdrivesystemandtorquecharacteristicsTheoutputtorquecanbeexplainedbytherelationshipofcurrentandinductanceasfollows.Inordertoestimatethephaseinductance,thephasecurrentexcitedbyaswitchingtestpulsevoltageisusedateverysamplingperiodshownasFig.2.Fig.2:WaveformoftestpulsevoltageandphasecurrentforinductanceestimationThevoltageequationforestimatingthephaseinductancecanbederiveddisregardingthevoltagedropofthephaseresistanceandtheback-emf.From(2),thephaseinductancethatisafunctionoftherotorpositioniscalculated,andtherotorpositionisestimatedfromthecalculatedinductanceaccordingto(3).Inspiteofacomplexcalculation,theestimatedrotorpositionfromthecalculatedinductancehassomeerrorduetothesaturationeffectincludingthenon-linearcharacteristicsoftheinductanceandthevoltagedropofthephaseresistance.TheProposedSensorlessControlSchemeofSRMSwitchingPatternDeterminationFig.3:TheproposeddetectingschemeofsensorlessexcitationFig.3showstheproposeddetectingalgorithmofthesensorlessexcitationofthe3-phaseSRM.Differentlyfromageneralexcitationmethod,theproposedschemehasexcitation,detectingandnonexcitationperiodsineachphase.Intheexcitationperiodwhichisdeterminedbytheothersnon-excitedphases,excitedphasecurrentproducesoutputtorque.Andtheappliedvoltageofeachphasewindingintheexcitationperiodiscontrolledbythespeedcontrollerandexcitationcurrentcontroller.Theamplifieddetectedcurrentinthedetectingperiod,iscomparedtopresetturn-onandturn-offcurrents,IonandIoffwhicharedeterminedbyposition-currentcharacteristicoftheproto-typeSRM.Thecomparisonresultofferstheotherphase’sturn-onandturn-offpositionθonandθoff,respectively.Inthenon-excitationperiod,thephasecurrentdoesnotflowthroughthephasewinding.Inthedetectingperiod,theamplifieddetectedcurrenthasnearlylinearslopeduetothedecreasingphaseinductance.Sincethewidthofthetestpulsevoltageisverynarrowandthedetectedcurrentisverysmall,saturationeffectofphaseinductancecanbeignored.Sotheslopeofthedetectingcurrentislinearaccordingtorotorpositionineachphasewindings.Butthedetectingperiodofanun-excitedphaseislocatedinthenegativetorqueregionshownasFig.2.SincethedetectingphasecurrentproducesnegativetorqueandDC-linkvoltagecanbechanged,testpulsevoltageshouldbelimitedandcontrolledforthestableoperation.Inordertolimitthenegativetorqueproducedfromdetectingcurrent,thedurationoftestpulsevoltageiscontrolledaccordingtoDC-linkvoltageinthispaper.ThemaximumdetectingphasecurrentisproducedintheminimuminductancerangeandthedetectingperiodofvoltagepulsecanbederivedasfollowswithnegativetorquelimitTNLMT.Inthispaper,thenegativetorquelimitTNLMTisdeterminedas2%ofratedtorqueofSRM,andthemaximumperiodoftestpulseislimitedto20[us].where,θmaxandθminaretherotorpositionofmaximuminductance,Lmaxandminimuminductance,Lmin,respectively.Fig.4showsthedetailedblockdiagramofthesensorlessswitchingpositiondetectingmethod.Theproposedturn-onandturn-offpositionestimatorconsistsofthepositionlevelgeneratorandthecurrentlevelcomparator.Thepositionlevelgeneratorproducesturn-onandturn-offcurrentlevelsfrompre-calculatedlook-uptable.Fig.4:TheblockdiagramoftheproposedsensorlessswitchingpositiondetectionThecontentofthelook-uptableissimplymeasuredwithafixedtestvoltagepulseaccordingtorotorposition.Becausethetestvoltagepulseisshortduetothelimitationofnegativetorqueproduction,theoutputcurrentlevelsareapproximatelyinverseproportionaltotheinductance.Ifthesensorlesscontrolsystemusesafixedturn-onandturn-offposition,thelook-uptablecanbeomitted.Sincethedetectingpulsecurrentisverysmallduetothelimitationofnegativetorque,itisamplifiedandlimitedabyzenerdiode.Thereferenceturn-onandturn-offposition,θ*on,θ*offchangewithIonandIofffromtheposition-currentlook-uptable.Thelook-uptableissimplepre-measuredwithtestpulses.Andthepresetturn-onandturn-offpositioncurrentarecomparedtotheamplifieddetectingcurrent.Thetriggerpulsesaregeneratedwhenthedetectingcurrentislargertheneachpresetvalue.ThetriggerpulsesareinputasinterruptsoftheDSP,andestimatedturn-on,turn-offpositionaredetermined.Therotorspeedissimplyestimatedbytheestimatedturn-onandturn-offpositionofeachphase.TheExcitationPhaseandPositionatStandstillInthestandstill,thefirstswitchingpatternisdeterminedfromdetectingcurrentexplainedintheFig.4.Itshowstherelationshipbetweendetectingcurrentandeachpossiblepositionatstandstill.Intheidealcase,pointa0,b0andc0whichthemaximumperiodofeachdetectingcurrentarethecriticalboundaryforthefirstexcitationphase.Fig.5:ThedetectingcurrentsofeachphaseaccordingtothestandstillpositionTheExperimentalResultsInordertoverifytheproposedsensorlessscheme,a12/8SRMandaDSPcontrollerwithasymmetricconverterareused.Table1showsthespecificationsofthe12/8SRMundertest.ThemaincontrollerisimplementedbyaTMS320F2812fromTexasInstrumentsanda600V/25AasymmetricconvertermoduleSK25GAD063TfromSEMIKRON.Fig.6:Theexperimentset-upTheproposedsensorlessPIcontrollerisimplementedinaTMS320F2812.Anencoderisusedforpositionmonitoring.TheasymmetricconverterislocatedundertheDSPcontrollerandsuppliespulsepowertothemotor.Fig.7showsthedetectingcurrentsaccordingtotherotorposition.Thepeakenvelopeisreverseproportionaltothephaseinductance.Consequently,theestimatedrotorpositioncanbederivedfromthepeakenvelopedetectionofunexcitedwindings.Fig.7:Thedetectingcurrentsofphase-aaccordingtotherotorpositionFig.8:Phasevoltage,switchingsignalandcurrentofphase-aforswitchingofphase-bandphase-cFig.8showsthephasevoltage,switchingsignalandphase-acurrent.Theswitchingonofphase-candswitchingoffofphase-barecarriedoutduringtheswitchingsignal'sinterval.Fig.9showstheexcitationcurrentandamplifieddetectingcurrentofthephases.Thephasecurrenthasexcitationanddetectingcurrentperiods.Theexcitationcurrentproducestheoperatingtorque.Andthedetectingcurrentpulseisusedforexcitationpositionestimationandexcitationsequenceofotherphases.Theamplifiedpeakofthephaseexcitationcurrentislimitedbyazenerdiode,andthepeakofthedetectingcurrentisamplifiedfortheexcitationsequencedetection.Fig.9:TheexcitationcurrentanddetectingcurrentsofeachphaseConclusionThispaperpresentsasimplesensorlesscontroloftheSRMusingcurrentpeakdetectionatnonexcitedphasewinding.Duetoasimplecurrentcomparatorfortheexcitationsequencedetermination,acomplexcalculationforexcitationpositionestimationfromestimatedinductancethatiscalculatedbydetectingcurrentisnotrequired.Withoutcomplexlook-uptableoffluxandrotorposition,theexcitationsequenceofeachphasecanbechangedbythecomparisonofpeakdetectingcurrentinthedetectionperiodofotherphases.Forthespeedestimation,thepeakvalueofthedetectingcurrentisusedandthefilteredestimatedspeedisusedinthespeedcontroller.Sincethepeakvalueofdetectingcurrentislimitedto200[mA],thesaturationeffectcanbeignored.Accordinglythepeakdetectedcurrentislimitedbythedetectionsamplingperiodandtheperiodiscontrolledbythelinkvoltageinformation.Theexperimentalresultsshowthatthevalidationoftheproposedmethodissimple.References[1]J.W.Ahn,“SwitchedReluctanceMotor”,OsungMedia,pp.364~418,2004[2]P.J.Lawrenson."ABriefStatusReviewofSwitchedReluctanceDrives",EPEVol.2,No.3,pp.133-144,1992.[3]M.Ehsani,I.Husain,A.B.Kulkarni,"EliminationofdiscretepositionsensorandcurrrentsensorinswitchedreluctanceMototrDrives",IEEETransonIA,Vol.28,pp.128-135,1992[4]J.W.Ahn,S.J.Park,T.H.Kim,“InductanceReasoningMethodforSensorlessControlofanSRM”,JournalofKIPE,Vol.8,No.5,pp.427~434,Oct.2003.[5]JiLili,Chenhao,"NonlinearmodelingandsimulationofswitchreluctancemotordrivesystembasedonMatlab"JournalofSoutheastUniversity,Nov.2004pp.149-154Vol.34Sep.[6]J.P.Lyns,S.R.MacMinn,andM.A.Preston,“Flux/currentMethodsforSRMRotorPositionEstimation”,inConf.Rec.1991/IEEE-IASAnnu.Meeting,Vol.1,pp.484-487,1991.[7]E.MeseandD.A.Torrey,“SensorlessPositionEstimationforVariable-RelucatnceMachineUsingArtificialNeuralNetworks”,inConf.Rec.1997IEEE-IASAnnu.Meeting,pp.540-547.[8]L.XuandJ.Bu,“PositionTransducerlessControlofaSwitchedRelucanceMotorUsingMinimumMagnetizingInput”,,inConf.Rec.1997IEEE-IASAnnu.Meeting,pp.533-549.傳感器SRM驅(qū)動器的一種簡易勵磁位置檢測方法鳴謝這篇論文的研究工作是2006年暑假金先生在德國錫根大學(xué)做實習(xí)項目時在G.施羅德博士的實驗室進行的。作者感謝KRF(韓國研究基金會)支持該項目。關(guān)鍵詞開關(guān)磁阻式驅(qū)動傳感器控制摘要本文介紹了SRM的一種簡化的新型的傳感器控制方法,它通過檢測在非勵磁周期電流水平來實現(xiàn)。由于電動機的電感是轉(zhuǎn)子位置的函數(shù),所以一種簡單的檢測脈沖電壓調(diào)節(jié)引起的脈沖電流方法提供轉(zhuǎn)子位置的信息。本文中,檢測到的微小脈沖電流與和開啟、關(guān)閉的位置成正比的提前預(yù)置電流水平相比,比較的結(jié)果用于下一相的激勵。一些模擬和實驗測試驗證了這種建議性的方法。導(dǎo)言開關(guān)磁阻電動機(以下簡稱為“SRM”)是一個動力驅(qū)動裝置,它制造簡單,價格低廉,并具有相對較高的可靠性,因為它能校驗?zāi)承?qū)動器故障。因此,在大轉(zhuǎn)矩,高輸出密度,高效率變速驅(qū)動器方面及諸如工業(yè)機械,飛機汽車,消費電子設(shè)備,及其他[1-2]應(yīng)用領(lǐng)域中經(jīng)濟的功率變頻器,相比于現(xiàn)有的感應(yīng)電動機,SRM驅(qū)動系統(tǒng)有一些比較有特色的地方。在SRM的控制中,準(zhǔn)確的轉(zhuǎn)子位置的信息對正確的相繞組勵磁是相當(dāng)必要的。由于輸出轉(zhuǎn)矩取決于勵磁周期和勵磁相位電流,轉(zhuǎn)子位置的準(zhǔn)確性是非常重要的。在一般的速度控制系統(tǒng)中,光學(xué)編碼器廣泛用于檢測轉(zhuǎn)子位置。近年來,由于在惡劣環(huán)境中出現(xiàn)故障及成本問題,傳感器控制和位置檢測技術(shù)在實際應(yīng)用中得到青睞。為了獲得傳感器轉(zhuǎn)子位置,我們要用到有數(shù)學(xué)基礎(chǔ)的觀測者和通量檢測方法[3-6]。由于觀測者所看到的轉(zhuǎn)子大概位置的精度依賴于數(shù)學(xué)模型和電氣參數(shù),所以估計誤差在低速范圍內(nèi)是很大的,而且在靜止位置時很難獲得轉(zhuǎn)子位置。雖然通量檢測方法可以不用任何復(fù)雜的數(shù)學(xué)模型很容易地地估計轉(zhuǎn)子位置,但需要通量的查表和轉(zhuǎn)子位置。由于飽和度的效應(yīng),通量和轉(zhuǎn)子位置是非線性關(guān)系。最近,模糊邏輯和ANN(人工神經(jīng)網(wǎng)絡(luò))已用于速度估計[7-8]本文提出了一種傳感器控制的簡化的新方法,它不需要通過估計電感對轉(zhuǎn)子位置進行復(fù)雜的計算。由于輸出轉(zhuǎn)矩取決于勵磁位置和勵磁電流,擬定的傳感器方案在檢測時期通過檢測非勵磁相繞組的電流確定勵磁類型。開啟和關(guān)閉的位置由檢測相電流水平?jīng)Q定,這是與前一勵磁周期的檢測周期的轉(zhuǎn)子位置成反比的。為了得到轉(zhuǎn)子位置和檢測相電流的線性關(guān)系,在檢測周期要用到短路測試電壓。由于提議的傳感器方案不使用復(fù)雜的電感計算,激勵模式可以很容易地由一個簡單的比較器決定。一些模擬和實驗測試驗證了這種建議性的方法。SRM的一般原則圖1顯示一個SR驅(qū)動系統(tǒng)和它的轉(zhuǎn)矩特性。在圖1中,輸出力矩在電感變化區(qū)域中產(chǎn)生,示與圖1(b)。(a)SR驅(qū)動系統(tǒng)(b)恒定電流時的轉(zhuǎn)矩特性圖1:SR驅(qū)動系統(tǒng)和轉(zhuǎn)矩特性輸出扭矩可以由下面的電流和電感關(guān)系闡明。為了估計相電感,在每個采樣周期都要用到開關(guān)測試脈沖電壓激發(fā)的相電流。示于圖2。圖2:測試脈沖電壓的波形和電感估計的相電流估計相電感的電壓方程可以忽略相阻抗的電壓降和反電勢而得到。由(2),相電感是轉(zhuǎn)子位置的函數(shù),可以計算出來。而轉(zhuǎn)子位置可以根據(jù)(3)計算出的電感來估計。除了復(fù)雜的計算,由于飽和效應(yīng),根據(jù)計算出的電感而估計出的轉(zhuǎn)子位置有一些誤差,包括電感的非線性特性和相阻抗的電壓降。擬定的SRM的傳感器控制方案開關(guān)模式測定圖3:擬定的傳感器激勵檢測方案圖3顯示了擬定的三相SRM的傳感器激勵的檢測算法。不同于一般激勵法,擬定方案在每一相都有檢測勵磁和非勵磁周期的。在由其他非勵磁相所決定的激勵周期,勵磁相電流產(chǎn)生輸出扭矩。在勵磁周期每個相繞組引入的電壓是由速度控制器和勵磁電流控制器控制的。檢測周期內(nèi)檢測到的放大的電流與預(yù)先設(shè)定的開啟Ion和關(guān)斷電流Ioff相比,Ion和Ioff由SRM原型的位置-電流特性決定。比較結(jié)果分別提供了其他相的開啟和關(guān)閉位置θon和θoff。在非勵磁周期,相電流不流經(jīng)相繞組。在檢測周期,由于相電感的減少,放大的檢測電流有近似的線性斜率。由于測試脈沖電壓的寬度和檢測電流都很小,相電感的飽和效應(yīng)可以忽略不計。因此,根據(jù)每個相繞組的轉(zhuǎn)子位置,檢測電流的斜率是線性的。但是,如圖2所示,非勵磁相的檢測周期位于負(fù)轉(zhuǎn)矩區(qū)域。由于檢測相電流產(chǎn)生負(fù)轉(zhuǎn)矩,并且DC聯(lián)絡(luò)線電壓可以改變,所以測試脈沖電壓應(yīng)限制和控制在穩(wěn)定運行狀態(tài)。為了限制檢測電流產(chǎn)生的負(fù)轉(zhuǎn)矩,本文中,測試脈沖電壓的持續(xù)時間是根據(jù)DC聯(lián)絡(luò)線電壓控制的。最大檢測相電流在最低電感范圍產(chǎn)生,電壓脈沖的檢測周期可以由如下得負(fù)轉(zhuǎn)矩極限得到。本文的負(fù)轉(zhuǎn)矩極限由SRM的額定扭矩的2%確定,測試脈沖的最大周期限定在20us。其中θmax和θmin分別是最大電感Lmax和最小電感Lmin時的轉(zhuǎn)子位置。圖4展示了詳細的傳感器開關(guān)位置檢測方法的框圖。擬定的開啟和關(guān)閉位置估算器包括位置電平產(chǎn)生器和電流電平比較器組成。由預(yù)先計算出的表格,位置電平產(chǎn)生器產(chǎn)生開啟和關(guān)斷電流電平。圖4:擬定的傳感器開關(guān)位置檢測方法框圖查表的內(nèi)容僅僅根據(jù)轉(zhuǎn)子位置用一個固定的測試電壓脈沖測得。由于產(chǎn)生的負(fù)轉(zhuǎn)矩的限制,測試電壓脈沖很短,所以輸出電流電平大概與電感成反比。如果傳感器控制系統(tǒng)使用一個固定的開啟和關(guān)閉位置,查表可省略。由于負(fù)轉(zhuǎn)矩的限制,探測脈沖電流非常小,可以通過齊納二極管將其放大和限制。該參考開啟和關(guān)閉的位置,和隨著位置-電流

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論