2024屆湖北省沙洋縣重點中學中考數(shù)學押題卷含解析_第1頁
2024屆湖北省沙洋縣重點中學中考數(shù)學押題卷含解析_第2頁
2024屆湖北省沙洋縣重點中學中考數(shù)學押題卷含解析_第3頁
2024屆湖北省沙洋縣重點中學中考數(shù)學押題卷含解析_第4頁
2024屆湖北省沙洋縣重點中學中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年湖北省沙洋縣重點中學中考數(shù)學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知,用尺規(guī)作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點2.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.3.一、單選題如圖中的小正方形邊長都相等,若△MNP≌△MEQ,則點Q可能是圖中的()A.點A B.點B C.點C D.點D4.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數(shù)是()A.0 B.1 C.2 D.35.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±206.小明早上從家騎自行車去上學,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關系如圖所示,放學后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學時一致,下列說法:①小明家距學校4千米;②小明上學所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學回家所用時間為15分鐘.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個7.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發(fā),P點到達B點運動停止,則△PBQ的面積S隨出發(fā)時間t的函數(shù)關系圖象大致是()A. B. C. D.8.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對9.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.10.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結論錯誤的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.12.如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.13.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.14.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點B在射線CA上,且BC=5,則△BDE周長的最小值為______.15.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.16.已知,則______17.如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結果保留根號).三、解答題(共7小題,滿分69分)18.(10分)解不等式組:.19.(5分)已知,,,斜邊,將繞點順時針旋轉,如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?20.(8分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個交點,求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,則另一個交點的坐標為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點A(3,0),連接AC,點P是拋物線位于線段AC下方圖象上的任意一點,求△PAC面積的最大值.21.(10分)解方程:-=122.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數(shù)關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.23.(12分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.24.(14分)某校為了了解九年級學生體育測試成績情況,以九年(1)班學生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)(1)寫出D級學生的人數(shù)占全班總人數(shù)的百分比為,C級學生所在的扇形圓心角的度數(shù)為;(2)該班學生體育測試成績的中位數(shù)落在等級內;(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】

根據(jù)作一個角等于已知角的作法即可得出結論.【題目詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫弧①,分別交OA、OB于點E、F,

第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫?。?/p>

故選:D.【題目點撥】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.2、B【解題分析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標系中的圖象情況,而這與“b”的取值無關.3、D【解題分析】

根據(jù)全等三角形的性質和已知圖形得出即可.【題目詳解】解:∵△MNP≌△MEQ,∴點Q應是圖中的D點,如圖,故選:D.【題目點撥】本題考查了全等三角形的性質,能熟記全等三角形的性質的內容是解此題的關鍵,注意:全等三角形的對應角相等,對應邊相等.4、D【解題分析】

根據(jù)反比例函數(shù)的性質和比例系數(shù)的幾何意義逐項分析可得出解.【題目詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發(fā)生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數(shù)的幾何意義.5、B【解題分析】

根據(jù)完全平方式的特點求解:a2±2ab+b2.【題目詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【題目點撥】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.6、C【解題分析】

從開始到A是平路,是1千米,用了3分鐘,則從學校到家門口走平路仍用3分鐘,根據(jù)圖象求得上坡(AB段)、下坡(B到學校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【題目詳解】解:①小明家距學校4千米,正確;②小明上學所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學回家所用時間為3+2+10=15分鐘,正確;故選:C.【題目點撥】本題考查利用函數(shù)的圖象解決實際問題,正確理解函數(shù)圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應解決.需注意計算單位的統(tǒng)一.7、C【解題分析】

根據(jù)題意表示出△PBQ的面積S與t的關系式,進而得出答案.【題目詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時間t的函數(shù)關系圖象大致是二次函數(shù)圖象,開口向下.故選C.【題目點撥】此題主要考查了動點問題的函數(shù)圖象,正確得出函數(shù)關系式是解題關鍵.8、C【解題分析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.9、A【解題分析】【分析】根據(jù)主視圖是從幾何體正面看得到的圖形,認真觀察實物,可得這個幾何體的主視圖為長方形上面一個三角形,據(jù)此即可得.【題目詳解】觀察實物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項符合題意,故選A.【名師點睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關鍵.10、C【解題分析】試題解析:∵四邊形ABCD是平行四邊形,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

連接,根據(jù)勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【題目詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【題目點撥】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.12、(4,6),(8﹣27,6),(27,6).【解題分析】

分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標.【題目詳解】解:當M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標為(4,6),當B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標為(8﹣27,6);當A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標為(27,6);綜上所述,M的坐標為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【題目點撥】本題主要考查矩形的性質、坐標與圖形性質,解題關鍵是根據(jù)對等腰三角形性質的掌握和勾股定理的應用.13、【解題分析】

由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【題目詳解】設MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【題目點撥】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.14、.【解題分析】

作BK∥CF,使得BK=DE=2,作K關于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【題目詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【題目點撥】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點之間線段最短及軸對稱添加輔助線是解題的關鍵.15、1【解題分析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內角的和求出∠ADB=∠C+∠DAC,再次根據(jù)等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內角和等于180°列式計算即可得解.【題目詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【題目點撥】本題考查了等腰三角形的性質,線段垂直平分線上的點到兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記各性質與定理是解題的關鍵.16、34【解題分析】∵,∴=,故答案為34.17、一4【解題分析】

分析:利用特殊三角函數(shù)值,解直角三角形,AM=MD,再用正切函數(shù),利用MB求CM,作差可求DC.【題目詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【題目點撥】本題考查了解直角三角形的應用,熟練掌握三角函數(shù)的相關定義以及變形是解題的關鍵.三、解答題(共7小題,滿分69分)18、﹣4≤x<1【解題分析】

先求出各不等式的【題目詳解】解不等式x﹣1<2,得:x<1,解不等式2x+1≥x﹣1,得:x≥﹣4,則不等式組的解集為﹣4≤x<1.【題目點撥】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.19、(1)1;(2);(3)x時,y有最大值,最大值.【解題分析】

(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【題目詳解】(1)由旋轉性質可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【題目點撥】本題考查幾何變換綜合題、30度的直角三角形的性質、等邊三角形的判定和性質、三角形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題.20、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當a=時,△PAC的面積取最大值,最大值為【解題分析】

(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個交點,利用根的判別式△=0,即可得出關于m的一元二次方程,解之取其非零值即可得出結論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質可找出二次函數(shù)圖象的對稱軸,利用二次函數(shù)圖象的對稱性即可找出另一個交點的坐標;(4)將點A的坐標代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點A、C的坐標,利用待定系數(shù)法可求出直線AC的解析式,過點P作PD⊥x軸于點D,交AC于點Q,設點P的坐標為(a,a2-2a-2),則點Q的坐標為(a,a-2),點D的坐標為(a,0),根據(jù)三角形的面積公式可找出S△ACP關于a的函數(shù)關系式,配方后即可得出△PAC面積的最大值.【題目詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,∴另一交點的橫坐標為2×2﹣4=﹣2,∴另一個交點的坐標為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點P作PD⊥x軸于點D,交AC于點Q,如圖所示.設點P的坐標為(a,a2﹣2a﹣2),則點Q的坐標為(a,a﹣2),點D的坐標為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當a=時,△PAC的面積取最大值,最大值為.【題目點撥】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、拋物線與x軸的交點、二次函數(shù)的性質以及二次函數(shù)的最值,解題的關鍵是:(2)代入點的坐標求出n值;(2)牢記當△=b2-4ac=0時拋物線與x軸只有一個交點;(2)利用二次函數(shù)的對稱軸求出另一交點的坐標;(4)利用三角形的面積公式找出S△ACP關于a的函數(shù)關系式.21、【解題分析】【分析】先去分母,把分式方程化為一元一次方程,解一元一次方程,再驗根.【題目詳解】解:去分母得:解得:檢驗:把代入所以:方程的解為【題目點撥】本題考核知識點:解方式方程.解題關鍵點:去分母,得到一元一次方程,.驗根是要點.22、(1);(2)①;②;(3)t的值為或1或.【解題分析】

(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結論;(2)分兩種情況:①當Q在邊AC上運動時,②當Q在邊AB上運動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關系式;(3)分別當⊙O與BC相切時、當⊙O與AB相切時,當⊙O與AC相切時三種情況分類討論即可確定答案.【題目詳解】(1)當t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當Q在邊AC上運動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當Q在邊AB上運動時,2<t<4如圖2,設⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當⊙O與AC相切時,如圖3,設切點為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論