圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述_第1頁
圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述_第2頁
圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述_第3頁
圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述_第4頁
圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述圖像增強(qiáng)技術(shù)外文翻譯參考文獻(xiàn)綜述(文檔含中英文對照即英文原文和中文翻譯)原文:HybridGeneticAlgorithmBasedImageEnhancementTechnologyAbstract—inimageenhancement,TubbsproposedanormalizedincompleteBetafunctiontorepresentseveralkindsofcommonlyusednon-lineartransformfunctionstodotheresearchonimageenhancement.ButhowtodefinethecoefficientsoftheBetafunctionisstillaproblem.WeproposedaHybridGeneticAlgorithmwhichcombinestheDifferentialEvolutiontotheGeneticAlgorithmintheimageenhancementprocessandutilizethequicklysearchingabilityofthealgorithmtocarryouttheadaptivemutationandsearches.FinallyweusetheSimulationexperimenttoprovetheeffectivenessofthemethod.Keywords-Imageenhancement;HybridGeneticAlgorithm;adaptiveenhancementI.INTRODUCTIONIntheimageformation,transferorconversionprocess,duetootherobjectivefactorssuchassystemnoise,inadequateorexcessiveexposure,relativemotionandsotheimpactwillgettheimageoftenadifferencebetweentheoriginalimage(referredtoasdegradedordegraded)Degradedimageisusuallyblurredoraftertheextractionofinformationthroughthemachinetoreduceorevenwrong,itmusttakesomemeasuresforitsimprovement.Imageenhancementtechnologyisproposedinthissense,andthepurposeistoimprovetheimagequality.FuzzyImageEnhancementsituationaccordingtotheimageusingavarietyofspecialtechnicalhighlightssomeoftheinformationintheimage,reduceoreliminatetheirrelevantinformation,toemphasizetheimageofthewholeorthepurposeoflocalfeatures.Imageenhancementmethodisstillnounifiedtheory,imageenhancementtechniquescanbedividedintothreecategories:pointoperations,andspatialfrequencyenhancementmethodsEnhancementAct.Thispaperpresentsanautomaticadjustmentaccordingtotheimagecharacteristicsofadaptiveimageenhancementmethodthatcalledhybridgeneticalgorithm.Itcombinesthedifferentialevolutionalgorithmofadaptivesearchcapabilities,automaticallydeterminesthetransformationfunctionoftheparametervaluesinordertoachieveadaptiveimageenhancement.II.IMAGEENHANCEMENTTECHNOLOGYImageenhancementreferstosomefeaturesoftheimage,suchascontour,contrast,emphasisorhighlightedges,etc.,inordertofacilitatedetectionorfurtheranalysisandprocessing.Enhancementswillnotincreasetheinformationintheimagedata,butwillchoosetheappropriatefeaturesoftheexpansionofdynamicrange,makingthesefeaturesmoreeasilydetectedoridentified,forthedetectionandtreatmentfollow-upanalysisandlayagoodfoundation.Imageenhancementmethodconsistsofpointoperations,spatialfiltering,andfrequencydomainfilteringcategories.Pointoperations,includingcontraststretching,histogrammodeling,andlimitingnoiseandimagesubtractiontechniques.Spatialfilterincludinglow-passfiltering,medianfiltering,highpassfilter(imagesharpening).Frequencyfilterincludinghomomorphismfiltering,multi-scalemulti-resolutionimageenhancementapplied[1].III.DIFFERENTIALEVOLUTIONALGORITHMDifferentialEvolution(DE)wasfirstproposedbyPriceandStorn,andwithotherevolutionaryalgorithmsarecompared,DEalgorithmhasastrongspatialsearchcapability,andeasytoimplement,easytounderstand.DEalgorithmisanovelsearchalgorithm,itisfirstinthesearchspacerandomlygeneratestheinitialpopulationandthencalculatethedifferencebetweenanytwomembersofthevector,andthedifferenceisaddedtothethirdmemberofthevector,bywhichMethodtoformanewindividual.Ifyoufindthatthefitnessofnewindividualmembersbetterthantheoriginal,thenreplacetheoriginalwiththeformationofindividualself.TheoperationofDEisthesameasgeneticalgorithm,anditconcludemutation,crossoverandselection,butthemethodsaredifferent.WesupposethatthegroupsizeisP,thevectordimensionisD,andwecanexpresstheobjectvectoras(1):xi=[xi1,xi2,…,xiD](i=1,…,P)(1)Andthemutationvectorcanbeexpressedas(2):i=1,...,P(2),,arethreerandomlyselectedindividualsfromgroup,andr1r2r3i.Fisarangeof[0,2]betweentheactualtypeconstantfactordifferencevectorisusedtocontroltheinfluence,commonlyreferredtoasscalingfactor.Clearlythedifferencebetweenthevectorandthesmallerthedisturbancealsosmaller,whichmeansthatifgroupsclosetotheoptimumvalue,thedisturbancewillbeautomaticallyreduced.DEalgorithmselectionoperationisa"greedy"selectionmode,ifandonlyifthenewvectoruithefitnessoftheindividualthanthetargetvectorisbetterwhentheindividualxi,uiwillberetainedtothenextgroup.Otherwise,thetargetvectorxiindividualsremainintheoriginalgroup,onceagainasthenextgenerationoftheparentvector.IV.HYBRIDGAFORIMAGEENHANCEMENTIMAGEenhancementisthefoundationtogetthefastobjectdetection,soitisnecessarytofindreal-timeandgoodperformancealgorithm.Forthepracticalrequirementsofdifferentsystems,manyalgorithmsneedtodeterminetheparametersandartificialthresholds.Canuseanon-completeBetafunction,itcancompletelycoverthetypicalimageenhancementtransformtype,buttodeterminetheBetafunctionparametersarestillmanyproblemstobesolved.ThissectionpresentsaBetafunction,sinceaccordingtotheapplicablemethodforimageenhancement,adaptiveHybridgeneticalgorithmsearchcapabilities,automaticallydeterminesthetransformationfunctionoftheparametervaluesinordertoachieveadaptiveimageenhancement.Thepurposeofimageenhancementistoimproveimagequality,whicharemoreprominentfeaturesofthespecifiedrestorethedegradedimagedetailsandsoon.Inthedegradedimageinacommonfeatureisthecontrastlowersideusuallypresentsbright,dimorgrayconcentrated.Low-contrastdegradedimagecanbestretchedtoachieveadynamichistogramenhancement,suchasgraylevelchange.WeuseIxytoillustratethegraylevelofpoint(x,y)whichcanbeexpressedby(3).Ixy=f(x,y)(3)where:“f”isalinearornonlinearfunction.Ingeneral,grayimagehavefournonlineartranslations[6][7]thatcanbeshownasFigure1.WeuseanormalizedincompleteBetafunctiontoautomaticallyfitthe4categoriesofimageenhancementtransformationcurve.Itdefinesin(4):(4)where:(5)Fordifferentvalueofαandβ,wecangetresponsecurvefrom(4)and(5).ThehybridGAcanmakeuseoftheprevioussectionadaptivedifferentialevolutionalgorithmtosearchforthebestfunctiontodetermineavalueofBeta,andtheneachpixelgrayscalevaluesintotheBetafunction,thecorrespondingtransformationofFigure1,resultinginidealimageenhancement.Thedetaildescriptionisfollows:Assumingtheoriginalimagepixel(x,y)ofthepixelgraylevelbytheformula(4),denotedby,,hereΩistheimagedomain.EnhancedimageisdenotedbyIxy.Firstly,theimagegrayvaluenormalizedinto[0,1]by(6).(6)where:andexpressthemaximumandminimumofimagegrayrelatively.Definethenonlineartransformationfunctionf(u)(0≤u≤1)totransformsourceimagetoGxy=f(),wherethe0≤Gxy≤1.Finally,weusethehybridgeneticalgorithmtodeterminetheappropriateBetafunctionf(u)theoptimalparametersαandβ.WillenhancetheimageGxytransformedantinormalized.V.EXPERIMENTANDANALYSISInthesimulation,weusedtwodifferenttypesofgray-scaleimagesdegraded;theprogramperformed50times,populationsizesof30,evolved600times.Theresultsshowthattheproposedmethodcanveryeffectivelyenhancethedifferenttypesofdegradedimage.Figure2,thesizeoftheoriginalimagea320×320,it'sthecontrasttolow,andsomedetailsofthemoreobscure,inparticular,scarvesandotherdetailsofthetextureisnotobvious,visualeffects,poor,usingthemethodproposedinthissection,toovercometheabovesomeoftheissuesandgetsatisfactoryimageresults,asshowninFigure5(b)shows,thevisualeffectshavebeenwellimproved.Fromthehistogramview,thescopeofthedistributionofimageintensityismoreuniform,andthedistributionoflightanddarkgrayareaismorereasonable.Hybridgeneticalgorithmtoautomaticallyidentifythenonlineartransformationofthefunctioncurve,andthevaluesobtainedbefore9.837,5.7912,fromthecurvecanbedrawn,itisconsistentwithFigure3,c-class,thatstretchacrossthemiddleregioncompressiontransformtheregion,whichwereconsistentwiththehistogram,theoveralloriginalimagelowcontrast,compressionatbothendsofthemiddleregionstretchingregionisconsistentwithhumanvisualsense,enhancedtheeffectofsignificantlyimproved.Figure3,thesizeoftheoriginalimagea320×256,theoverallintensityislow,theuseofthemethodproposedinthissectionaretheimagesb,wecanseetheground,chairsandclothesandotherdetailsoftheresolutionandcontrastthantheoriginalimagehasImprovedsignificantly,theoriginalimagegraydistributionconcentratedinthelowerregion,andtheenhancedimageofthegrayuniform,graybeforeandaftertransformationandnonlineartransformationofbasicgraph3(a)thesameclass,namely,theimageDimregionstretching,andthevalueswere5.9409,9.5704,nonlineartransformationofimagesdegradedtypeinferenceiscorrect,theenhancedvisualeffectandgoodrobustnessenhancement.Difficulttoassessthequalityofimageenhancement,imageisstillnocommonevaluationcriteria,commonpeaksignaltonoiseratio(PSNR)evaluationintermsofline,butthepeaksignaltonoiseratiodoesnotreflectthehumanvisualsystemerror.Therefore,weusemarginalprotectionindexandcontrastincreaseindextoevaluatetheexperimentalresults.EdgelProtectionIndex(EPI)isdefinedasfollows:(7)

ContrastIncreaseIndex(CII)isdefinedasfollows:(8)Infigure4,wecomparedwiththeWaveletTransformbasedalgorithmandgettheevaluatenumberinTABLEI.Figure4(a,c)showtheoriginalimageandthedifferentialevolutionalgorithmforenhancedresultscanbeseenfromtheenhancedcontrastmarkedlyimproved,clearerimagedetails,edgefeaturemoreprominent.b,cshowsthewavelet-basedhybridgeneticalgorithm-basedComparisonofImageEnhancement:wavelet-basedenhancementmethodtoenhanceimagedetailoutsomeoftheimagevisualeffectisanimprovementovertheoriginalimage,buttheenhancementisnotobvious;andHybridgeneticalgorithmbasedonadaptivetransformimageenhancementeffectisverygood,imagedetails,texture,clarityisenhancedcomparedwiththeresultsbasedonwavelettransformhasgreatlyimprovedtheimageofthepost-analyticalprocessinghelpful.Experimentalenhancementexperimentusingwavelettransform"sym4"wavelet,enhanceddifferentialevolutionalgorithmexperiment,theparametersandthevalueswere5.9409,9.5704.Fora256×256sizeimagetransformbasedonadaptivehybridgeneticalgorithminMatlab7.0imageenhancementsoftware,thecomputingtimeisabout2seconds,operationisveryfast.FromTABLEI,objectiveevaluationcriteriacanbeseen,boththeedgeoftheprotectionindex,ortoenhancethecontrastindex,basedonadaptivehybridgeneticalgorithmcomparedtotraditionalmethodsbasedonwavelettransformhasalargerincrease,whichisfromThissectiondescribestheobjectiveadvantagesofthemethod.Fromaboveanalysis,wecanseethatthismethod.Fromaboveanalysis,wecanseethatthismethodcanbeusefulandeffective.VI.CONCLUSIONInthispaper,tomaintaintheintegrityoftheperspectiveimageinformation,theuseofHybridgeneticalgorithmforimageenhancement,canbeseenfromtheexperimentalresults,basedontheHybridgeneticalgorithmforimageenhancementmethodhasobviouseffect.Comparedwithotherevolutionaryalgorithms,hybridgeneticalgorithmoutstandingperformanceofthealgorithm,itissimple,robustandrapidconvergenceisalmostoptimalsolutioncanbefoundineachrun,whilethehybridgeneticalgorithmisonlyafewparametersneedtobesetandthesamesetofparameterscanbeusedinmanydifferentproblems.UsingtheHybridgeneticalgorithmquicksearchcapabilityforagiventestimageadaptivemutation,search,tofinalizethetransformationfunctionfromthebestparametervalues.Andtheexhaustivemethodcomparedtoasignificantreductioninthetimetoaskandsolvethecomputingcomplexity.Therefore,theproposedimageenhancementmethodhassomepracticalvalue.REFERENCES[1]HEBinetal.,VisualC++DigitalImageProcessing[M],Posts&TelecomPress,2001,4:473~477[2]StornR,PriceK.DifferentialEvolution—aSimpleandEfficientAdaptiveSchemeforGlobalOptimizationoverContinuousSpace[R].InternationalComputerScienceInstitute,Berlaey,1995.[3]TubbsJD.Anoteonparametricimageenhancement[J].PatternRecognition.1997,30(6):617-621.[4]TANGMing,MASongDe,XIAOJing.EnhancingFarInfraredImageSequenceswithModelBasedAdaptiveFiltering[J].CHINESEJOURNALOFCOMPUTERS,2000,23(8):893-896.[5]ZHOUJiLiu,LVHang,ImageEnhancementBasedonANewGeneticAlgorithm[J].ChineseJournalofComputers,2001,24(9):959-964.[6]LIYun,LIUXuecheng.OnAlgorithmofImageConstractEnhancementBasedonWaveletTransformation[J].ComputerApplicationsandSoftware,2008,8.[7]XIEMei-hua,WANGZheng-ming,ThePartialDifferentialEquationMethodforImageResolutionEnhancement[J].JournalofRemoteSensing,2005,9(6):673-679.基于混合遺傳算法的圖像增強(qiáng)技術(shù)摘要—在圖像增強(qiáng)之中,塔布斯提出了歸一化不完全β函數(shù)表示常用的幾種使用的非線性變換函數(shù)對圖像進(jìn)行研究增強(qiáng)。但如何確定Beta系數(shù)功能仍然是一個問題。在圖像增強(qiáng)處理和利用遺傳算法快速算法的搜索能力進(jìn)行自適應(yīng)變異和搜索我們提出了一種混合遺傳將微分進(jìn)化算法。最后利用仿真實(shí)驗(yàn)證明了該方法的有效性。關(guān)鍵詞—圖像增強(qiáng);混合遺傳算法;自適應(yīng)增強(qiáng)Ⅰ.介紹在圖像形成,傳遞或轉(zhuǎn)換過程,由于其他客觀因素,如系統(tǒng)噪聲,不足或過度曝光,相對運(yùn)動等的影響會使圖像通常與原始圖像之間有差別(簡稱退化或退化)。退化圖像通常模糊或信息的提取通過機(jī)器后減少甚至是錯誤的,它必須采取一些改進(jìn)措施。圖像增強(qiáng)技術(shù)是在其目的是為了提高圖像的質(zhì)量這個意義上提出的。模糊圖像增強(qiáng)情況是根據(jù)圖像使用各種特殊技術(shù)集錦的一些信息圖像,減少或消除不相關(guān)的信息,來強(qiáng)調(diào)整體或局部特征的目標(biāo)圖像。圖像增強(qiáng)方法仍沒有統(tǒng)一的理論,圖像增強(qiáng)技術(shù)可分為三類別:點(diǎn)運(yùn)算,與空間頻率增強(qiáng)方法增強(qiáng)法。本文介紹了根據(jù)圖像特征自動調(diào)整自適應(yīng)圖像增強(qiáng)方法,稱為混合遺傳算法。為了實(shí)現(xiàn)圖像的自適應(yīng)增強(qiáng)它結(jié)合了差分進(jìn)化自適應(yīng)搜索算法,自動確定的參數(shù)值的變換函數(shù)。Ⅱ.圖像增強(qiáng)技術(shù)圖像增強(qiáng)是圖像的某些特征,如輪廓,對比,強(qiáng)調(diào)或突出的邊緣等為了便于檢測和進(jìn)一步的分析和處理.增強(qiáng)將不會增加圖像中的信息數(shù)據(jù),但會選擇適當(dāng)?shù)膭討B(tài)范圍的功能的擴(kuò)展,使得這些特點(diǎn)更容易檢測或確定,為后續(xù)的分析和處理的檢測打下良好的基礎(chǔ)。圖像增強(qiáng)方法包括點(diǎn)運(yùn)算,空間濾波,頻域?yàn)V波類別。點(diǎn)運(yùn)算包括對比度拉伸,直方圖建模,并限制噪聲和圖像減影技術(shù)??臻g濾波器包括低通濾波,中值濾波,高通濾波器(銳化)。頻率濾波器包括同態(tài)濾波,多尺度多分辨率圖像增強(qiáng)中的應(yīng)用[1]。Ⅲ.差分進(jìn)化算法差分進(jìn)化(DE)首次提出了強(qiáng)硬的價值,并與其他進(jìn)化算法進(jìn)行比較,DE算法具有強(qiáng)大的空間搜索能力,易實(shí)現(xiàn),容易理解。DE算法是一種新型的搜索算法,它首先是在搜索空間中隨機(jī)產(chǎn)生初始種群,然后計算之間的任何差異向量的兩個成員,所不同的添加到向量的第三個成員,通過該方法,形成一個新的個人。如果你發(fā)現(xiàn)新的個體成員比原來的好,然后替換原來的個體,自我的形成。DE操作作為遺傳算法一樣,它結(jié)論突變,交叉和選擇,但方法是不同的。我們假設(shè)組的大小是P,矢量維D,我們可以表達(dá)的目標(biāo)向量為(1):xi=[xi1,xi2,…,xiD](i=1,…,P)(1)變異向量可以表示為(2):i=1,...,P(2),,是三個從群中隨機(jī)選擇的個人,其中,r1r2r3i。F是一系列的[0,2]之間的實(shí)際類型的用于控制影響的常數(shù)因子差異向量,通常被稱為比例因子。顯然,矢量之間的區(qū)別越小則干擾也越小,這意味著如果組接近最佳值,擾動會自動降低。DE算法的選擇操作是一個“貪婪”的選擇模式,當(dāng)且僅當(dāng)新的矢量Ui比目標(biāo)向量Xi更好更健全,Ui將被保留到下一組。否則,目標(biāo)向量Xi留在原來的組,再次作為下一代的父矢量。Ⅳ.圖像增強(qiáng)圖像的混合遺傳算法增強(qiáng)是獲得快速對象檢測的基礎(chǔ),因此有必要尋找實(shí)時性能好的算法。對不同系統(tǒng)的實(shí)際要求,許多算法需要確定的參數(shù)和人工閾值。它可以使用一個非完全Beta函數(shù)來完全覆蓋典型變換式的圖像增強(qiáng),但確定Beta函數(shù)參數(shù)仍有許多亟待解決的問題。本節(jié)介紹了一種Beta功能,因?yàn)楦鶕?jù)適用的圖像增強(qiáng)的方法,自適應(yīng)混合遺傳算法的搜索的能力,自動確定變換命令的參數(shù)值來實(shí)現(xiàn)圖像增強(qiáng)的自適應(yīng)功能。

圖像增強(qiáng)的目的是提高圖像質(zhì)量,是在指定的比較突出的特點(diǎn)恢復(fù)退化圖像細(xì)節(jié)等。一個共同的特征的退化圖像通常是對比的下側(cè)呈明亮的,暗淡或灰色濃。低對比度退化圖像可拉伸達(dá)到一種動態(tài)的直方圖增強(qiáng),如灰度變化。我們用Ixy來說明點(diǎn)(x,y)的灰度級它可以是由(3)表示。Ixy=f(x,y)(3)其中:“f”為一個線性或非線性函數(shù)。在一般情況下,灰圖像有四個非線性的翻譯[6][7],可以是如圖1所示。我們采用歸一化的Beta函數(shù)自動適應(yīng)4類圖像增強(qiáng)轉(zhuǎn)變曲線。(4)中定義:(4)其中:(5)對于不同的α,β值,我們可以從(4)及(5)中得到響應(yīng)曲線。圖1四種傳統(tǒng)的翻譯該混合算法可以利用前面的部分自適應(yīng)差分進(jìn)化算法搜索最佳函數(shù)來確定的β值,然后每個像素灰度值為β函數(shù),相應(yīng)的圖1轉(zhuǎn)化,產(chǎn)生理想的圖像增強(qiáng)。詳細(xì)描述如下:假設(shè)原始圖像的像素(x,y)的像素的灰度水平,表示為式(4),記為,,這里是圖像域。增強(qiáng)的圖像由Ixy表示。首先,圖像的灰度值在(6)中歸到[0,1]。(6)其中:imax和imin表示圖像灰度的最大值和最小值。定義非線性變換函數(shù)f(U)(0≤U≤1)變換成源圖像GXY=f(GXY),其中,0≤GXY≤1。最后,我們使用了混合遺傳算法來確定適當(dāng)?shù)腂eta函數(shù)f(U)的最佳參數(shù)α和β。V.實(shí)驗(yàn)和分析在模擬中,我們使用兩種不同類型的灰度圖像退化;程序執(zhí)行了50次,人口大小為30,進(jìn)化600次。結(jié)果表明,提出的方法可以非常有效地提高不同退化圖像類型。a)原始圖像b)增強(qiáng)圖像圖2單個圖像增強(qiáng)過程a)原始圖像b)增強(qiáng)圖像圖3移動對象增強(qiáng)過程圖2,原始圖像為320×320的大小,它是對比度低,和更為模糊的一些細(xì)節(jié),特別的,外圍和其他細(xì)節(jié)很不明顯,視覺效果差,使用文中提出的方法部分,克服了以上的一些問題,并得到令人滿意的圖像效果,如圖5(b)顯示,該視覺效果得到明顯改善。從直方圖看來,圖像的強(qiáng)度分布的范圍是比較均勻,光明與黑暗的灰色區(qū)域的分布更合理了。混合遺傳算法自動確定函數(shù)曲線的非線性變換,從曲線可以得出值9.837,5.7912,它符合圖3的C級,跨越壓縮變換的中間區(qū)域,這與直方圖相一致,整體的原始圖像低對比度,在中間區(qū)域兩端壓縮拉伸區(qū)域與人的視覺一致,增強(qiáng)效果明顯提高。圖3,原始圖像的大小320×25,整體強(qiáng)度低,使用文中提出的方法得到b圖像,我們可以看到地上,椅子和衣服和其他細(xì)節(jié)的分辨率和對比度比原始圖像有明顯改善,原始圖像的灰度分布集中在較低的區(qū)域,其增強(qiáng)的灰度圖像的灰度均勻,圖3(a)之前和之后基本的變換和非線性變換是一樣的,即,圖像暗區(qū)伸展的值是5.9409,9.5704,非線性變換的圖像退化類型推斷是正確的,增強(qiáng)視覺效果和良好的圖像增強(qiáng)效應(yīng)。圖像還沒有一個統(tǒng)一的評價標(biāo)準(zhǔn)則很難評價圖像質(zhì)量的提高,有共同峰值信號噪聲比(PSNR)方面的評價,但峰值信噪比不反映人類視覺系統(tǒng)誤差。因此,我們利用邊緣保護(hù)指數(shù)與對比增長指數(shù)評價實(shí)驗(yàn)結(jié)果。edgel保護(hù)指數(shù)(EPI)的定義如下(7):(7)

對比度增加指數(shù)(CII)定義如下:(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論