2024屆湖北恩施龍鳳民族初級中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2024屆湖北恩施龍鳳民族初級中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2024屆湖北恩施龍鳳民族初級中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2024屆湖北恩施龍鳳民族初級中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2024屆湖北恩施龍鳳民族初級中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖北恩施龍鳳民族初級中學(xué)中考考前最后一卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°2.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.3.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.4.在一些美術(shù)字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.5.學(xué)習(xí)全等三角形時,數(shù)學(xué)興趣小組設(shè)計并組織了“生活中的全等”的比賽,全班同學(xué)的比賽結(jié)果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分6.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當(dāng)線段BE′和線段BC′都與線段AD相交時,設(shè)交點分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.7.如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣48.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.399.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm10.把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為()A.15 B.17 C.19 D.24二、填空題(本大題共6個小題,每小題3分,共18分)11.把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設(shè)小圓形場地的半徑為x米,若要求出未知數(shù)x,則應(yīng)列出方程(列出方程,不要求解方程).12.《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設(shè)有x匹大馬,y匹小馬,根據(jù)題意可列方程組為______.13.若關(guān)于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根,則m的值為______.14.廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-140x15.八位女生的體重(單位:kg)分別為36、42、38、40、42、35、45、38,則這八位女生的體重的中位數(shù)為_____kg.16.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點O,其擺放方式如圖所示,則∠AOB等于______度.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,DG⊥AC于點G,交AB的延長線于點F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2518.(8分)先化簡,再求值:,其中.19.(8分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.20.(8分)計算:|﹣1|﹣2sin45°+﹣21.(8分)計算:﹣4cos45°+()﹣1+|﹣2|.22.(10分)(2016山東省煙臺市)某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(12分)如圖,用細線懸掛一個小球,小球在豎直平面內(nèi)的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)24.某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】【分析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【題目詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【題目點撥】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識是解題的關(guān)鍵.2、C【解題分析】

連接D為弧AB的中點,根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質(zhì)可得:即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則即可求出的值.【題目詳解】如圖:連接D為弧AB的中點,根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則故選C.【題目點撥】考查弧,弦之間的關(guān)系,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù)等,綜合性比較強,關(guān)鍵是構(gòu)造全等三角形.3、D【解題分析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.4、A【解題分析】

根據(jù)軸對稱圖形的概念判斷即可.【題目詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【題目點撥】本題考查的是軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、C【解題分析】

解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【題目點撥】本題考查數(shù)據(jù)分析.6、A【解題分析】

先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設(shè)DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【題目詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設(shè)DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準(zhǔn)確作出輔助線是解題關(guān)鍵.7、D【解題分析】

首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【題目詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.【題目點撥】此題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).解題時注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法。8、D【解題分析】

原式利用平方根、立方根定義計算即可求出值.【題目詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【題目點撥】此題考查了立方根,以及算術(shù)平方根,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.9、A【解題分析】

過點P作PD⊥OB于D,根據(jù)角平分線上的點到角的兩邊距離相等可得PC=PD,再根據(jù)垂線段最短解答即可.【題目詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【題目點撥】考查了角平分線上的點到角的兩邊距離相等的性質(zhì),垂線段最短的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.10、D【解題分析】

由圖可知:第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,第④個圖案有三角形1+3+4+4=12,…第n個圖案有三角形4(n﹣1)個(n>1時),由此得出規(guī)律解決問題.【題目詳解】解:解:∵第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,…∴第n個圖案有三角形4(n﹣1)個(n>1時),則第⑦個圖中三角形的個數(shù)是4×(7﹣1)=24個,故選D.【題目點撥】本題考查了規(guī)律型:圖形的變化類,根據(jù)給定圖形中三角形的個數(shù),找出an=4(n﹣1)是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、π(x+5)1=4πx1.【解題分析】

根據(jù)等量關(guān)系“大圓的面積=4×小圓的面積”可以列出方程.【題目詳解】解:設(shè)小圓的半徑為x米,則大圓的半徑為(x+5)米,根據(jù)題意得:π(x+5)1=4πx1,故答案為π(x+5)1=4πx1.【題目點撥】本題考查了由實際問題抽象出一元二次方程的知識,本題等量關(guān)系比較明顯,容易列出.12、【解題分析】分析:根據(jù)題意可以列出相應(yīng)的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.13、-1【解題分析】

根據(jù)關(guān)于x的一元二次方程x2+2x﹣m=0有兩個相等的實數(shù)根可知△=0,求出m的取值即可.【題目詳解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案為-1.【題目點撥】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時,方程有兩個不相等的兩個實數(shù)根;②當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;③當(dāng)△<0時,方程無實數(shù)根.14、85【解題分析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標(biāo)差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|15、1【解題分析】

根據(jù)中位數(shù)的定義,結(jié)合圖表信息解答即可.【題目詳解】將這八位女生的體重重新排列為:35、36、38、38、40、42、42、45,則這八位女生的體重的中位數(shù)為=1kg,故答案為1.【題目點撥】本題考查了中位數(shù),確定中位數(shù)的時候一定要先排好順序,然后再根據(jù)個數(shù)是奇數(shù)或偶數(shù)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù),中位數(shù)有時不一定是這組數(shù)據(jù)的數(shù).16、108°【解題分析】

如圖,易得△OCD為等腰三角形,根據(jù)正五邊形內(nèi)角度數(shù)可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【題目詳解】∵五邊形是正五邊形,∴每一個內(nèi)角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【題目點撥】本題考查正多邊形的內(nèi)角計算,分析出△OCD是等腰三角形,然后求出頂角是關(guān)鍵.三、解答題(共8題,共72分)17、(3)證明見試題解析;(3)3.【解題分析】試題分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2試題解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點:3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.18、,【解題分析】

先根據(jù)完全平方公式進行約分化簡,再代入求值即可.【題目詳解】原式=-==,將a=+1代入得,原式===,故答案為.【題目點撥】本題主要考查了求代數(shù)式的值、分式的運算,解本題的要點在于正確化簡,從而得到答案.19、(1)證明見解析;(1).【解題分析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質(zhì)求出OC=OD,根據(jù)菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據(jù)菱形的性質(zhì)得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【題目詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.【題目點撥】本題主要考查了矩形的性質(zhì)和菱形的性質(zhì)和判定的應(yīng)用,能靈活運用定理進行推理是解此題的關(guān)鍵,注意:菱形的面積等于對角線積的一半.20、﹣1【解題分析】

直接利用負指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)、特殊角的三角函數(shù)值分別化簡得出答案.【題目詳解】原式=(﹣1)﹣2×+2﹣4=﹣1﹣+2﹣4=﹣1.【題目點撥】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.21、4【解題分析】分析:代入45°角的余弦函數(shù)值,結(jié)合“負整數(shù)指數(shù)冪的意義”和“二次根式的相關(guān)運算法則”進行計算即可.詳解:原式=.點睛:熟記“特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的意義:(為正整數(shù))”是正確解答本題的關(guān)鍵.22、13.1.【解題分析】試題分析:如圖,作CM∥AB交AD于M,MN⊥AB于N,根據(jù)=,可求得CM的長,在RT△AMN中利用三角函數(shù)求得AN的長,再由MN∥BC,AB∥CM,判定四邊形MNBC是平行四邊形,即可得BN的長,最后根據(jù)AB=AN+BN即可求得AB的長.試題解析:如圖作CM∥AB交AD于M,MN⊥AB于N.由題意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四邊形MNBC是平行四邊形,∴BN

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論