江蘇省鎮(zhèn)江新區(qū)大港中學(xué)2024屆中考五模數(shù)學(xué)試題含解析_第1頁
江蘇省鎮(zhèn)江新區(qū)大港中學(xué)2024屆中考五模數(shù)學(xué)試題含解析_第2頁
江蘇省鎮(zhèn)江新區(qū)大港中學(xué)2024屆中考五模數(shù)學(xué)試題含解析_第3頁
江蘇省鎮(zhèn)江新區(qū)大港中學(xué)2024屆中考五模數(shù)學(xué)試題含解析_第4頁
江蘇省鎮(zhèn)江新區(qū)大港中學(xué)2024屆中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省鎮(zhèn)江新區(qū)大港中學(xué)2024年中考五模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當(dāng)點P在BC上從點B向點C移動,而點R不動時,下列結(jié)論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關(guān)2.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.3.在中,,,,則的值是()A. B. C. D.4.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米5.一、單選題如圖中的小正方形邊長都相等,若△MNP≌△MEQ,則點Q可能是圖中的()A.點A B.點B C.點C D.點D6.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃7.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.8.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.9.方程的解是()A. B. C. D.10.罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結(jié)果影響很大.如圖是對某球員罰球訓(xùn)練時命中情況的統(tǒng)計:下面三個推斷:①當(dāng)罰球次數(shù)是500時,該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③二、填空題(共7小題,每小題3分,滿分21分)11.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.12.分解因式:4a2﹣1=_____.13.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.14.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.15.?dāng)?shù)據(jù)﹣2,0,﹣1,2,5的平均數(shù)是_____,中位數(shù)是_____.16.下列圖形是用火柴棒擺成的“金魚”,如果第1個圖形需要8根火柴,則第2個圖形需要14根火柴,第根圖形需要____________根火柴.17.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數(shù)為_____°.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當(dāng)點E在邊BC上時,求證DE=EB;如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.19.(5分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.20.(8分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.21.(10分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字1和-1;乙袋中有三個完全相同的小球,分別標(biāo)有數(shù)字-1、0和1.小麗先從甲袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點P的坐標(biāo)為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標(biāo);(1)求點P在一次函數(shù)y=x+1圖象上的概率.22.(10分)如圖,在Rt中,,分別以點A、C為圓心,大于長為半徑畫弧,兩弧相交于點M、N,連結(jié)MN,與AC、BC分別交于點D、E,連結(jié)AE.(1)求;(直接寫出結(jié)果)(2)當(dāng)AB=3,AC=5時,求的周長.23.(12分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?24.(14分)如圖,在方格紙上建立平面直角坐標(biāo)系,每個小正方形的邊長為1.(1)在圖1中畫出△AOB關(guān)于x軸對稱的△A1OB1,并寫出點A1,B1的坐標(biāo);(2)在圖2中畫出將△AOB繞點O順時針旋轉(zhuǎn)90°的△A2OB2,并求出線段OB掃過的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質(zhì),2、勾股定理,3、三角形的中位線2、A【解題分析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【題目詳解】如圖,點E即為所求作的點.故選:A.【題目點撥】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.3、D【解題分析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【題目詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【題目點撥】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.4、C【解題分析】

過點A作AD⊥BC于點D.根據(jù)三角函數(shù)關(guān)系求出BD、CD的長,進(jìn)而可求出BC的長.【題目詳解】如圖所示,過點A作AD⊥BC于點D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.【題目點撥】本題主要考查三角函數(shù),解答本題的關(guān)鍵是熟練掌握三角函數(shù)的有關(guān)知識,并牢記特殊角的三角函數(shù)值.5、D【解題分析】

根據(jù)全等三角形的性質(zhì)和已知圖形得出即可.【題目詳解】解:∵△MNP≌△MEQ,∴點Q應(yīng)是圖中的D點,如圖,故選:D.【題目點撥】本題考查了全等三角形的性質(zhì),能熟記全等三角形的性質(zhì)的內(nèi)容是解此題的關(guān)鍵,注意:全等三角形的對應(yīng)角相等,對應(yīng)邊相等.6、A【解題分析】

用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【題目詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.7、A【解題分析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.8、B【解題分析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.9、D【解題分析】

按照解分式方程的步驟進(jìn)行計算,注意結(jié)果要檢驗.【題目詳解】解:經(jīng)檢驗x=4是原方程的解故選:D【題目點撥】本題考查解分式方程,注意結(jié)果要檢驗.10、B【解題分析】

根據(jù)圖形和各個小題的說法可以判斷是否正確,從而解答本題【題目詳解】當(dāng)罰球次數(shù)是500時,該球員命中次數(shù)是411,所以此時“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯誤;隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.2附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯誤.故選:B.【題目點撥】此題考查了頻數(shù)和頻率的意義,解題的關(guān)鍵在于利用頻率估計概率.二、填空題(共7小題,每小題3分,滿分21分)11、2【解題分析】

把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【題目詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點的坐標(biāo)滿足的關(guān)系式.12、(2a+1)(2a﹣1)【解題分析】

有兩項,都能寫成完全平方數(shù)的形式,并且符號相反,可用平方差公式展開.【題目詳解】4a2﹣1=(2a+1)(2a﹣1).故答案為:(2a+1)(2a-1).【題目點撥】此題考查多項式因式分解,根據(jù)多項式的特點選擇適合的分解方法是解題的關(guān)鍵.13、1.【解題分析】過點B作BE⊥x軸于點E,根據(jù)D為OB的中點可知CD是△OBE的中位線,即CD=BE,設(shè)A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結(jié)論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設(shè)A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.14、3【解題分析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關(guān)系,可求EC的最大值,即可求BD的最大值.【題目詳解】如圖:以AB為邊作等邊△ABE,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【題目點撥】考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),以及三角形的三邊關(guān)系,恰當(dāng)添加輔助線構(gòu)造全等三角形是本題的關(guān)鍵.15、0.80【解題分析】

根據(jù)中位數(shù)的定義和平均數(shù)的求法計算即可,中位數(shù)是將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).【題目詳解】平均數(shù)=(?2+0?1+2+5)÷5=0.8;把這組數(shù)據(jù)按從大到小的順序排列是:5,2,0,-1,-2,故這組數(shù)據(jù)的中位數(shù)是:0.故答案為0.8;0.【題目點撥】本題考查了平均數(shù)與中位數(shù)的定義,解題的關(guān)鍵是熟練的掌握平均數(shù)與中位數(shù)的定義.16、【解題分析】

根據(jù)圖形可得每增加一個金魚就增加6根火柴棒即可解答.【題目詳解】第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+2×6個火柴組成,……∴組成n個系列正方形形的火柴棒的根數(shù)是8+6(n-1)=6n+2.故答案為6n+2【題目點撥】本題考查數(shù)字規(guī)律問題,通過歸納與總結(jié),得到其中的規(guī)律是解題關(guān)鍵.17、30或1.【解題分析】

根據(jù)題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數(shù),則可求得答案.【題目詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數(shù)為:30°或1°.故答案為30或1.【題目點撥】本題考查圓周角定理;含30度角的直角三角形.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解題分析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【題目詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.19、(1)證明見解析(2)【解題分析】

(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【題目詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【題目點撥】本題考核知識點:切線性質(zhì),銳角三角函數(shù)的應(yīng)用.解題關(guān)鍵點:由全等三角形性質(zhì)得到線段相等,根據(jù)直角三角形性質(zhì)得到相應(yīng)等式.20、(1)見解析;(2)△ADF的面積是.【解題分析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;

(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=,求出OM,根據(jù)cos∠BAC=,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【題目點撥】考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識點的運用,通過做此題培養(yǎng)了學(xué)生的分析問題和解決問題的能力.21、(1)見解析;(1)13【解題分析】試題分析:(1)畫出樹狀圖(或列表),根據(jù)樹狀圖(或表格)列出點P所有可能的坐標(biāo)即可;(1)根據(jù)(1)的所有結(jié)果,計算出這些結(jié)果中點P在一次函數(shù)圖像上的個數(shù),即可求得點P在一次函數(shù)圖像上的概率.試題解析:(1)畫樹狀圖:或列表如下:∴點P所有可能的坐標(biāo)為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個點在一次函數(shù)圖像上,∴P(點P在一次函數(shù)圖像上)=.考點:用(樹狀圖或列表法)求概率.22、(1)∠ADE=90°;(2)△ABE的周長=1.【解題分析】試題分析:(1)是線段垂直平分線的做法,可得∠ADE=90°(2)根據(jù)勾股定理可求得BC=4,由垂直平分線的性質(zhì)可知AE=CE,所以△ABE的周長為AB+BE+AE=AB+BC=1試題解析:(1)∵由題意可知MN是線段AC的垂直平分線,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵M(jìn)N是線段AC的垂直平分線,∴AE=CE,∴△ABE的周長=AB+(AE+BE)=AB+BC=3+4=1.考點:1、尺規(guī)作圖;2、線段垂直平分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論