




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆寶坻區(qū)第一中學(xué)數(shù)學(xué)高三上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.2.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.3.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,,則,,的大小關(guān)系為()A. B. C. D.5.已知函數(shù),,若方程恰有三個不相等的實(shí)根,則的取值范圍為()A. B.C. D.6.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.7.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.3608.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.9.五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.10.過拋物線C:y2=4x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.11.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.12.的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.40二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________14.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個.15.曲線f(x)=(x2+x)lnx在點(diǎn)(1,f(1))處的切線方程為____.16.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),點(diǎn),,,動點(diǎn)滿足,點(diǎn)為線段的中點(diǎn),拋物線:上點(diǎn)的縱坐標(biāo)為,.(1)求動點(diǎn)的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線的準(zhǔn)線上一點(diǎn)滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.18.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.19.(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)20.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.21.(12分)購買一輛某品牌新能源汽車,在行駛?cè)旰?,政府將給予適當(dāng)金額的購車補(bǔ)貼.某調(diào)研機(jī)構(gòu)對擬購買該品牌汽車的消費(fèi)者,就購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計(jì)擬購買該品牌汽車的消費(fèi)群體對購車補(bǔ)貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費(fèi)群體中隨機(jī)抽取人,記對購車補(bǔ)貼金額的心理預(yù)期值高于萬元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計(jì)最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預(yù)計(jì)該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,如果方程有兩個不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因?yàn)?,所以四邊形為平行四邊?又因?yàn)槠矫妫矫?,所以平面,所以平?在直角三角形中,,設(shè),則,所以,所以.又因?yàn)?,?dāng)且僅當(dāng),即時等號成立,所以.故選:B.【點(diǎn)睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.2、B【解析】
首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因?yàn)?,所以因?yàn)樗裕?,,時故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.3、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識.4、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時,,因?yàn)椋栽谏蠁握{(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.5、B【解析】
由題意可將方程轉(zhuǎn)化為,令,,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實(shí)根,即,①.因?yàn)椋偈絻蛇呁?,?所以方程有三個不等的正實(shí)根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因?yàn)?,?dāng)時,,所以在,上單調(diào)遞增,且時,.當(dāng)時,,在上單調(diào)遞減,且時,.所以當(dāng)時,取最大值,當(dāng),有一根.所以恰有兩個不相等的實(shí)根,所以.故選:B.【點(diǎn)睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.6、D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.7、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.8、B【解析】
畫出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時,點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時.所以的取值范圍是.故選:B【點(diǎn)睛】本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識;考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識.9、A【解析】
列舉出金、木、水、火、土任取兩個的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.10、C【解析】
聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計(jì)算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.11、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.12、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項(xiàng)==-40+80=40二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時,等號成立.當(dāng)時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.14、2【解析】
設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個.故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.15、【解析】
求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點(diǎn)坐標(biāo)為(1,0),
則函數(shù)在點(diǎn)(1,f(1))處的切線方程為,
即,
故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.16、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線的標(biāo)準(zhǔn)方程為.拋物線的標(biāo)準(zhǔn)方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點(diǎn)P的軌跡W是橢圓,寫出橢圓的標(biāo)準(zhǔn)方程,根據(jù)平面向量數(shù)量積運(yùn)算和點(diǎn)A在拋物線上求出拋物線C的標(biāo)準(zhǔn)方程;(2)設(shè)出點(diǎn)P的坐標(biāo),再表示出點(diǎn)N和Q的坐標(biāo),根據(jù)題意求出的值,即可判斷結(jié)果是否成立.【詳解】(1)由題知,,所以,因此動點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,又知,,所以曲線的標(biāo)準(zhǔn)方程為.又由題知,所以,所以,又因?yàn)辄c(diǎn)在拋物線上,所以,所以拋物線的標(biāo)準(zhǔn)方程為.(2)設(shè),,由題知,所以,即,所以,又因?yàn)?,,所以,所以為定值,且定值?.【點(diǎn)睛】本題考查了圓錐曲線的定義與性質(zhì)的應(yīng)用問題,考查拋物線的幾何性質(zhì)及點(diǎn)在曲線上的代換,也考查了推理與運(yùn)算能力,是中檔題.18、(1)證明見解析;(2).【解析】
(1)證明,得到平面,得到證明.(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的一個法向量為,平面的一個法向量為,計(jì)算夾角得到答案.【詳解】(1)因?yàn)樗倪呅问橇庑?,且,所以是等邊三角形,又因?yàn)槭堑闹悬c(diǎn),所以,又因?yàn)椋?,所以,又,,,所以,又,,所以平面,所以,又因?yàn)槭橇庑危?,所以,又,所以平面,所?(2)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,,平面與平面所成銳二面角的余弦值.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.19、(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后討論當(dāng)時的函數(shù)單調(diào)情況:當(dāng)時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號,即可確定整數(shù)的最大值;當(dāng)時不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時無需再討論.【詳解】(1)證明:當(dāng)時代入可得,令,,則,令解得,當(dāng)時,所以在單調(diào)遞增,當(dāng)時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當(dāng)時,,則在時單調(diào)遞減,所以,即當(dāng)時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當(dāng)時,即在內(nèi)單調(diào)遞減,當(dāng)時,即在內(nèi)單調(diào)遞增,所以當(dāng)時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當(dāng)時,在時,此時,與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時無需再討論,綜上所述,當(dāng)時,整數(shù)的最大值為.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強(qiáng),屬于難題.20、(Ⅰ);(Ⅱ)?!窘馕觥?/p>
(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時,原不等式可化為,此時不成立;當(dāng)時,原不等式可化為,解得,即;當(dāng)時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因?yàn)椋?dāng)且僅當(dāng)時等號成立,所以.當(dāng)時,,所以.所以,解得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、(1)1.7;(2),見解析;(2)2.【解析】
(1)平均數(shù)的估計(jì)值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項(xiàng)分布列的期望公式計(jì)算;(3)利用所給公式計(jì)算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費(fèi)群體對購車補(bǔ)貼金額的心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房頂修繕合同范本
- 麥草加工合同范本
- 2025西安數(shù)據(jù)資產(chǎn)經(jīng)營有限責(zé)任公司招聘筆試參考題庫附帶答案詳解
- 專利推廣合同范本
- Mepiroxol-生命科學(xué)試劑-MCE
- 造房合同范本
- 網(wǎng)絡(luò)直播合作合同范本
- 電影院影城綠色環(huán)保裝飾材料的實(shí)踐與探索
- 短視頻與網(wǎng)絡(luò)直播的整合營銷策略
- 電商行業(yè)人才培訓(xùn)的實(shí)踐基地建設(shè)與管理
- 2022年醫(yī)學(xué)專題-健康危險(xiǎn)因素干預(yù)
- 平岡中學(xué)教師任職條件
- 小老鼠找朋友 演示文稿
- 2023年青島職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- 2023年蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
- GB/T 37864-2019生物樣本庫質(zhì)量和能力通用要求
- 中國國防:新中國國防建設(shè)成就【2】
- 慢性病建檔表系列
- GB 19641-2015食品安全國家標(biāo)準(zhǔn)食用植物油料
- 科室會專用-元治-鹽酸貝尼地平-產(chǎn)品介紹
- 英語四六級翻譯技巧課件
評論
0/150
提交評論