版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆福建省廈門市翔安一中數(shù)學(xué)高三上期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.22.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.3.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.4.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.25.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.6.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.7.在三角形中,,,求()A. B. C. D.8.隨著人民生活水平的提高,對(duì)城市空氣質(zhì)量的關(guān)注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測(cè)情況,圖中一、二、三、四級(jí)是空氣質(zhì)量等級(jí),一級(jí)空氣質(zhì)量最好,一級(jí)和二級(jí)都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個(gè)B.第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個(gè)月D.6月份的空氣質(zhì)量最差.9.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.28210.已知中,,則()A.1 B. C. D.11.已知過點(diǎn)且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.312.已知向量,,若,則()A. B. C.-8 D.8二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為________.14.若,則的最小值為________.15.在數(shù)列中,,則數(shù)列的通項(xiàng)公式_____.16.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭奪冠軍,失利的兩隊(duì)爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為是橢圓的一個(gè)焦點(diǎn),點(diǎn),直線的斜率為1.(1)求橢圓的方程;(1)若過點(diǎn)的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,是否存在直線使得?若存在,求出的方程;若不存在,請(qǐng)說明理由.18.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.19.(12分)在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;(2)設(shè)M為曲線C1上的點(diǎn),N為曲線C2上的點(diǎn),求|MN|的取值范圍.20.(12分)在中,角,,所對(duì)的邊分別為,,,且.求的值;設(shè)的平分線與邊交于點(diǎn),已知,,求的值.21.(12分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.22.(10分)如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點(diǎn),已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.2、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.3、B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.4、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.5、C【解析】
設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):【點(diǎn)睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.6、C【解析】
設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.7、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.8、D【解析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.9、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題10、C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.【點(diǎn)睛】本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.11、C【解析】
設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點(diǎn),則,又∵,∴,∴,解得,,∴過點(diǎn)與曲線相切的直線方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復(fù)數(shù)的乘法運(yùn)算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.14、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。15、【解析】
由題意可得,又,數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,對(duì)分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項(xiàng)公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),則為奇數(shù),∴,∴數(shù)列的通項(xiàng)公式,故答案為:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,求出通項(xiàng)公式后再由已知求出偶數(shù)項(xiàng),要注意結(jié)果是分段函數(shù)形式.16、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(1)不存在,理由見解析【解析】
(1)利用離心率和過點(diǎn),列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達(dá)定理表示中點(diǎn)N的坐標(biāo),用點(diǎn)坐標(biāo)表示,利用韋達(dá)關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當(dāng)直線的斜率不存在時(shí),,不符合題意.當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立得,設(shè),則,,,即.設(shè),則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了弦長和中點(diǎn)問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查化歸與轉(zhuǎn)化思想,屬于難題.19、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】
(Ⅰ)消去參數(shù)φ可得C1的直角坐標(biāo)方程,易得曲線C2的圓心的直角坐標(biāo)為(0,2),可得C2的直角坐標(biāo)方程;(Ⅱ)設(shè)M(3cosφ,sinφ),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識(shí)可得答案.【詳解】(1)消去參數(shù)φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標(biāo)為(0,2),∴C2的直角坐標(biāo)方程為x2+(y﹣2)2=1;(2)設(shè)M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結(jié)合圖象可得|MN|的最小值為1﹣1=0,最大值為1,∴|MN|的取值范圍為[0,1].【點(diǎn)睛】本題考查橢圓的參數(shù)方程,涉及圓的知識(shí)和極坐標(biāo)方程,屬中檔題.20、;.【解析】
利用正弦定理化簡求值即可;利用兩角和差的正弦函數(shù)的化簡公式,結(jié)合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內(nèi)角,故,,則,故,;(2)平分,設(shè),則,,,,則,,又,則在中,由正弦定理:,.【點(diǎn)睛】本題考查正弦定理和兩角和差的正弦函數(shù)的化簡公式,二倍角公式,考查運(yùn)算能力,屬于基礎(chǔ)題.21、(1)(2)直線過定點(diǎn)【解析】
設(shè).(1)由題意知,.設(shè)直線的方程為,由得,則,由根與系數(shù)的關(guān)系可得,所以.由,得,解得.所以拋物線的方程為.(2)設(shè)直線的方程為,由得,由根與系數(shù)的關(guān)系可得,所以,解得.所以直線的方程為,所以時(shí),直線過定點(diǎn).22、(Ⅰ)證明見解析;(Ⅱ).【解析】
(Ⅰ)先證明
,再證明平面,利用面面垂直的判定定理,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中考英語一輪復(fù)習(xí)之一般過去時(shí)
- 手工藝品店前臺(tái)服務(wù)感悟
- 醫(yī)療行業(yè)專業(yè)技能培訓(xùn)總結(jié)
- 酒店行業(yè)服務(wù)員工作概述
- 銀行工作總結(jié)嚴(yán)謹(jǐn)高效服務(wù)至上
- 餐廚垃圾處理工作總結(jié)
- 畜牧行業(yè)安全工作總結(jié)
- 2024年秋葉的教案
- 2025屆張家口市高三語文上學(xué)期期末質(zhì)量監(jiān)測(cè)試卷及答案解析
- 農(nóng)貿(mào)市場租賃合同(2篇)
- 山東省濟(jì)南市2023-2024學(xué)年高三上學(xué)期期末學(xué)習(xí)質(zhì)量檢測(cè)物理試題(原卷版)
- 2024年新華人壽保險(xiǎn)股份有限公司招聘筆試參考題庫含答案解析
- 能源托管服務(wù)投標(biāo)方案(技術(shù)方案)
- 2024年新奧集團(tuán)股份有限公司招聘筆試參考題庫含答案解析
- 乳頭混淆疾病演示課件
- 高速公路涉路施工許可技術(shù)審查指南(一)
- 海南物流行業(yè)發(fā)展趨勢(shì)分析報(bào)告
- 安全運(yùn)維配置檢查
- 移相變壓器計(jì)算程序標(biāo)準(zhǔn)版
- 期末測(cè)試(試題)-三年級(jí)數(shù)學(xué)上冊(cè)人教版
- 藥劑科門診中成西藥房利用PDCA循環(huán)降低門診藥房調(diào)劑內(nèi)差發(fā)生率品管圈QCC成果匯報(bào)
評(píng)論
0/150
提交評(píng)論