版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆威海市中考數(shù)學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a72.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°3.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.54.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是()A.袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過95.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,66.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥37.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=48.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間9.如果,那么的值為()A.1 B.2 C. D.10.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>二、填空題(本大題共6個小題,每小題3分,共18分)11.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α的值為_________,12.化簡:=__________.13.若關于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.14.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.15.若分式的值為正數(shù),則x的取值范圍_____.16.已知直角三角形的兩邊長分別為3、1.則第三邊長為________.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.18.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.19.(8分)先化簡,再求值:,其中滿足.20.(8分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)21.(8分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數(shù)作為a的值代入求值.22.(10分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.23.(12分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.①求S關于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.24.在平面直角坐標系xOy中有不重合的兩個點與.若Q、P為某個直角三角形的兩個銳角頂點,當該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”記做,特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”.例如下圖中,點,點,此時點Q與點P之間的“直距”.(1)①已知O為坐標原點,點,,則_________,_________;②點C在直線上,求出的最小值;(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線上一動點.直接寫出點E與點F之間“直距”的最小值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
根據(jù)合并同類項法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對各選項分析判斷后利用排除法求解.【題目詳解】A.a+a=2a,故本選項正確;B.,故本選項錯誤;C.,故本選項錯誤;D.,故本選項錯誤.故選:A.【題目點撥】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎,掌握運算法則是解題的關鍵.2、D【解題分析】
直接利用三角板的特點,結(jié)合平行線的性質(zhì)得出∠BDE=45°,進而得出答案.【題目詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【題目點撥】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關鍵.3、B【解題分析】
連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【題目詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【題目點撥】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關鍵.4、D【解題分析】
根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【題目詳解】解:根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【題目點撥】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、A【解題分析】試題分析:根據(jù)平均數(shù)的定義列式計算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點:中位數(shù);算術平均數(shù).6、C【解題分析】
根據(jù)“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【題目詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【題目點撥】考查了解不等式組,根據(jù)求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.7、D【解題分析】
A、表示81的算術平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【題目詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【題目點撥】本題主要考查的是實數(shù)的運算,掌握算術平方根、平方根和二次根式的性質(zhì)以及完全平方公式是解題的關鍵.8、A【解題分析】
直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【題目詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【題目點撥】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關鍵.9、D【解題分析】
先對原分式進行化簡,再尋找化簡結(jié)果與已知之間的關系即可得出答案.【題目詳解】故選:D.【題目點撥】本題主要考查分式的化簡求值,掌握分式的基本性質(zhì)是解題的關鍵.10、C【解題分析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、15或255°【解題分析】如下圖,設直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.12、a+b【解題分析】
將原式通分相減,然后用平方差公式分解因式,再約分化簡即可。【題目詳解】解:原式====a+b【題目點撥】此題主要考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.13、m>-1【解題分析】
首先解關于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關于m的不等式,求得m的范圍.【題目詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據(jù)題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【題目點撥】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關鍵是把m當作已知數(shù)表示出x+y的值,再得到關于m的不等式.14、或.【解題分析】
聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【題目詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【題目點撥】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉(zhuǎn)化為一元二次方程解的問題是解決此題的關鍵.15、x>1【解題分析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.16、4或【解題分析】試題分析:已知直角三角形兩邊的長,但沒有明確是直角邊還是斜邊,因此分兩種情況討論:①長為3的邊是直角邊,長為3的邊是斜邊時:第三邊的長為:;②長為3、3的邊都是直角邊時:第三邊的長為:;∴第三邊的長為:或4.考點:3.勾股定理;4.分類思想的應用.三、解答題(共8題,共72分)17、(1);(2)與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解題分析】
利用二次函數(shù)圖象上點的坐標特征可得出點A、B的坐標,結(jié)合即可得出關于a的一元一次方程,解之即可得出結(jié)論;由點A、B的坐標可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結(jié)合即可得出S關于x的函數(shù)關系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質(zhì)可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結(jié)論;當時,由點B的縱坐標可得出點E的縱坐標為4,結(jié)合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.【題目詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當時,S取最大值,最大值為18,此時點E的坐標為,與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設點D的坐標為,則點E的坐標為,,當時,,,,為等腰直角三角形.,即,解得:舍去,,點D的坐標為;當時,點E的縱坐標為4,,解得:,舍去,點D的坐標為.綜上所述:存在點D,使得和相似,此時點D的坐標為或.故答案為:(1);(2)與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標特征、一次函數(shù)圖象上點的坐標特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關鍵是:利用二次函數(shù)圖象上點的坐標特征求出點A、B的坐標;利用三角形的面積找出S關于x的函數(shù)關系式;分及兩種情況求出點D的坐標.18、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解題分析】試題分析:(1)由點A與點B關于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8試題解析:(1)∵點A與點B關于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數(shù)的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數(shù)的解析式:y=24x(2)∵點A與點B關于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8x的圖象于點分別連結(jié)PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.19、1【解題分析】試題分析:原式第一項括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分后,兩項通分并利用同分母分式的減法法則計算得到最簡結(jié)果,已知方程變形后代入計算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.20、(1)1500;(2)見解析;(3)108°;(3)12~23歲的人數(shù)為400萬【解題分析】試題分析:(1)根據(jù)30-35歲的人數(shù)和所占的百分比求調(diào)查的人數(shù);(2)從調(diào)查的總?cè)藬?shù)中減去已知的三組的人數(shù),即可得到12-17歲的人數(shù),據(jù)此補全條形統(tǒng)計圖;(3)先計算18-23歲的人數(shù)占調(diào)查總?cè)藬?shù)的百分比,再計算這一組所對應的圓心角的度數(shù);(4)先計算調(diào)查中12﹣23歲的人數(shù)所占的百分比,再求網(wǎng)癮人數(shù)約為2000萬中的12﹣23歲的人數(shù).試題解析:解:(1)結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖可知,30-35歲的人數(shù)為330人,所占的百分比為22%,所以調(diào)查的總?cè)藬?shù)為330÷22%=1500人.故答案為1500;(2)1500-450-420-330=300人.補全的條形統(tǒng)計圖如圖:(3)18-23歲這一組所對應的圓心角的度數(shù)為360×=108°.故答案為108°;(4)(300+450)÷1500=50%,.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖.21、1.【解題分析】試題分析:首先把括號的分式通分化簡,后面的分式的分子分解因式,然后約分化簡,接著計算分式的乘法,最后代入數(shù)值計算即可求解.試題解析:原式===;當a=0時,原式=1.考點:分式的化簡求值.22、(1)見解析;(2)見解析.【解題分析】
連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【題目詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【題目點撥】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識.注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出.還要注意構造直徑所對的圓周角是圓中的常見輔助線.23、(1)y=﹣x2+2x+1.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(1)y=﹣x+1;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解題分析】【分析】(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標利用平行四邊形的性質(zhì)可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結(jié)合CE≠PE可得出此時不存在符合題意的點M;(1)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結(jié)論.【題目詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴拋物線的對稱軸為直線x=1,當t=2時,點C、P關于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+1,∴點C的坐標為(0,1),點P的坐標為(2,1),∴點M的坐標為(1,6);當t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標為0,點E的橫坐標為0,∴點P的橫坐標t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點P作PF∥y軸,交BC于點F.設直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點P的坐標為(t,﹣t2+2t+1),∴點F的坐標為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當t=時,S取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 毫針刺法-針灸學課件南京中醫(yī)藥大學
- 陜西省咸陽市武功縣2023-2024學年八年級上學期期末考試數(shù)學試卷(含解析)
- 中國著名電視劇導演
- 河南許昌普高2025屆高考沖刺模擬語文試題含解析
- 《效績考核與管理》課件
- 14.2《荷塘月色》課件 2024-2025學年統(tǒng)編版高中語文必修上冊-1
- 遼寧省阜蒙縣育才高中2025屆高三適應性調(diào)研考試數(shù)學試題含解析
- 遼寧沈陽市第31中學2025屆高考考前模擬數(shù)學試題含解析
- 海南省華僑中學2025屆高三最后一模英語試題含解析
- 2025屆天津市寶坻區(qū)普通高中高考語文必刷試卷含解析
- 農(nóng)業(yè)氣象學-作業(yè)1-國開(ZJ)-參考資料
- 2024北京市房屋租賃合同自行成交
- 鉗工工藝與技能課件
- 北京市海淀區(qū)2023-2024學年高三上學期期末考試+歷史 含答案
- 2024-2030年地質(zhì)勘察行業(yè)市場前景與發(fā)展預測
- 大學輔導員崗位考核參考指標
- 品牌價值提升年度實施方案計劃
- 2023-2024年人教版六年級數(shù)學上冊期末試卷及答案
- 天津市紅橋區(qū)2023-2024學年九年級上學期期中道德與法治試卷
- 高職勞動教育學習通超星期末考試答案章節(jié)答案2024年
- 2023年注冊城鄉(xiāng)規(guī)劃師考試:城鄉(xiāng)規(guī)劃相關知識歷年真題匯編(共388題)
評論
0/150
提交評論