道橋工程中英文對(duì)照外文翻譯文獻(xiàn)_第1頁
道橋工程中英文對(duì)照外文翻譯文獻(xiàn)_第2頁
道橋工程中英文對(duì)照外文翻譯文獻(xiàn)_第3頁
道橋工程中英文對(duì)照外文翻譯文獻(xiàn)_第4頁
道橋工程中英文對(duì)照外文翻譯文獻(xiàn)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)英文:1.1ApproachforanalyzingtheultimatestrengthofconcretefilledsteeltubulararchbridgeswithstiffeninggirderAbstract:Aconvenientapproachisproposedforanalyzingtheultimateloadcarryingcapacityofconcretefilledsteeltubular(CFST)archbridgewithstiffeninggirders.AfibermodelbeamelementisspeciallyusedtosimulatethestiffeninggirderandCFSTarchrib.Thegeometricnonlinearity,materialnonlinearity。influenceoftheconstructionprocessandthecontributionofprestressingreinforcementarealltakenintoconsideration.Theaccuracyofthismethodisvalidatedbycomparingitsresultswithexperimentalresults.Finally,theultimatestrengthofanabnormalCFSTarchbridgewithstiffeninggirdersisinvestigatedandtheeffectofconstructionmethodisdiscussed.Itisconcludedthattheconstructionprocesshaslittleeffectontheultimatestrengthofthebridge.Keywords:Ultimatestrength,Concretefilledsteeltubular(CFST)archbridge,Stiffeninggirder,Fibermodelbeamelement,Constructionprocessdoi:10.1631/jzus.2007.A0682NTRODUCTIONWiththeincreasingapplicationsofconcretefilledsteeltubular(CFST)structuresincivilengi-neeringinChina,archbridgeshavebecomeoneofthecompetitivestylesinmoderatespanorlongspanbridges.TakingtheFuxingBridgeinHangzhou(Zhaoetal.,2004),andWushanBridgeinChongqing(Zhangetal.,2003),China,asrepresentatives,thestructuralconfiguration,thespanandconstructionscaleofsuchbridgeshavesurpassedthoseofexistingCFSTarchbridgesintheworld.Therefore,itisofgreatimportancetoenhancethetheoreticallevelinthedesignofCFSTarchbridgesforsafetyandeconomy.hecalculationofultimatebearingcapacityisasignificantissueindesignofCFSTarchbridges.Asanarchstructureisprimarilysubjectedtocompres-siveforces,theultimatestrengthofCFSTarchbridgeisdeterminedbythestabilityrequirement.Anumberoftheoreticalstudieswereconductedinthepasttoinvestigatethestabilityandload-carryingcapacityofCFSTarchbridges.Zengetal.(2003)studiedtheloadcapacityofCFSTarchbridgeusingacompositebeamelement,involvinggeometricandmaterialnonlin-earity.Zhangetal.(2006)derivedatangentstiffnessmatrixforspatialCFSTpoleelementtoconsiderthegeometricandmaterialnonlinearitiesunderlargedisplacementbyco-rotationalcoordinatemethod.Xieetal.(2005)proposedanumericalmethodtodeterminetheultimatestrengthofCFSTarchbridgesandrevealedthattheeffectoftheconstitutiverelationofconfinedconcreteisnotsignificant.Huetal.(2006)investigatedtheeffectofPoisson’sratioofcoreconcreteontheultimatebearingcapacityofalongspanCFSTarchbridgeandfoundthatthebearingcapacityisenhancedby10%ifthePoisson’sratioisvariable.Ontheotherhand,manyexperimentalstudiesontheultimatestrengthofnakedCFSTarchriborCFSTarchbridgemodelhadbeenconducted.ExperimentalstudiesonCFSTarchribunderin-planeandout-of-planeloadswerecarriedoutbyChenandChen2000)andChenetalmetricalnonlinearitywassignificantfortheout-of-planestrengthandlesssignificantforthein-planestrength.Cuietal.(2004)introducedaglobalmodeltestofaCFSTarchbridgewithspanof308m,andsuggestedthattheinfluenceofinitialstressshouldbeconsidered.TheabovepapersmainlyfocusedontheultimatestrengthofCFSTnakedarchribsorCFSTarchbridgeswithfloatingdeck.NoattemptwasmadetostudytheultimatestrengthofCFSTarchbridgeswithstiffeninggirderswhosenonlinearbehaviorandCFSTarchshouldbesimulatedduetotheredistributionofinnerforcesbetweenarchribsandstiffeninggirders.Ingeneral,stiffeninggirderscanbeclassifiedintosteelgirder,PC(prestressingconcrete)girderandteel-concretecombinationgirder.ItismostdifficulttosimulatethenonlinearbehaviorofPCgirder,duetotheinfluenceofprestressingreinforcement.Incontrasttosteelorsteel-concretecombinationbeam,theprestressingreinforcementsinPCgirdersnotonlyofferstrengthandstiffnessdirectly,buttheirtensiongreatlyaffectsthestiffnessanddistributionoftheinitialforcesinthestructure.Theaimsofthispaperare(1)topresentanelas-tic-plasticanalysisoftheultimatestrengthofCFSTarchbridgewitharbitrarystiffeninggirders;(2)tostudytheultimateload-carryingcapacityofacomplicatedCFSTarchbridgewithabnormalarchribsandPCstiffeninggirders;and(3)toinvestigatetheeffectofconstructionmethodsontheultimatestrengthofthestructure.ANALYTICALTHEORYElasto-plasticlargedeformationofPCgirderelementTheelasto-plasiclargedeformationanalysisofPCbeamelementsisbasedonthefollowingfundamentalassumptions:(1)Aplanesectionoriginallynormaltotheneutralaxisalwaysremainsaplaneandnormaltotheneutralaxisduringdeformation;(2)Thesheardeformationduetoshearstressisneglected;TheSaint-Venanttorsionalprincipleholdsin(4)Theeffectofshearstressonthestress-strainrelationshipisignored.Thecross-sectionofaPCboxgirderwithonesymmetricaxisisdepictedinFig.1,where,Gandsdenotethegeometrycenterandtheshearcenterre-spectively.Accordingtothefirstandthethirdas-sumptionslistedabove,thedisplacementincrementsofpointA(x,y)inthesectioncanbeexpressedintermsofthedisplacementincrementsatthegeometrycenterandtheshearcenteraswhereKtoristhecoefficientfactorwhichisrelatedtothegeometryshapeofthegirdercross-section.Similarto3Delasticbeamtheory,thedisplacementincrementofthegirdercanbeexpressedintermsofthenodaldisplacementincrementsasinwhichLdenotestheelementlength,andzistheaxialcoordinateofthelocalcoordinatesystemofanelement.Then,thedisplacementvectorofanysectionoftheelementcanbewrittenaswhere?uisthedisplacementvectorofanysectionofthebeamelement,Nistheshapefunctionmatrixand?ueisthedisplacementvectoroftheelementnode.TheyarerespectivelyexpressedasAccordingtoEq.(2),thelinearstraincanbeex-pressedasinwhichBListhelinearstrainmatrixoftheelementCorrespondingly,thenonlinearstrainmaybeexpressedaswhereBNListhenonlinearstrainmatrixoftheele-mentThestressincrement?σcanbeapproximatedusingthelinearstrainincrementaswhereDisthematerialpropertymatrix.Neglectingtheinfluenceoftheshearstrain,DcanbeexpressedwhereE(ε)isthetangentmodulusofthematerialwhichisdependentonthestrainstate,andGistheelasticshearingmodulusregardedasaconstant.Accordingtotheprincipleofvirtualwork,wehaveinwhichσand?σarethestressvectorandstressincrementofthecurrentstate,qandParethedis-tributedloadandconcentratedloadvector,?qand?Paretheincrementsofdistributedloadandconcen-tratedload,δ?uandδ?εarethevirtualdisplacementandvirtualstrain,andVisthevolumeoftheelement.SubstituteEqs.(9),(11)and(14)intoEq.(16)andignoretheinfinitesimalvariable?σ?εN,wehavewhere?Feistheincrementofelementloadvectorcorrespondingto?ue,theelementdisplacementvec-tor.KepandKσaretheelasto-plasticandgeometricstiffnessmatrixesofthebeamelementrespectivelyasfollowsThedistributionofelasticandplasticzonesisnon-uniformintheelement,andvariesduringde-formation.ItisverydifficulttopresentanexplicitexpressionofthepropertymatrixDforthewholesection.Hence,thesectionisdividedintomanysubareas,asshowninFig.2,andthefibermodelisadoptedtocalculatetheelement’sstiffnessmatrix,i.e.Obviously,ifthenumberofsubareasissuffi-cientlylarge,theresultofEq.(19)willapproachtheexactsolution.ThevalueofKepiscalculatedusingnumericalintegration,withDibeingregardedasi.TocomputethegeometricstiffnessmatrixKσ,thenormalstressshouldbeexpressedintermsofaxialforceandbendingmoment,whichactuallyhasverylittlecontributiontothegeometricstiffness,sowhereNistheaxialforce,andAisthesectionalarea.PrestressingreinforcementelementThereinforcedbarsparalleltothebeamaxismayberegardedasfibers,whosecontributionstothestiffnesscouldbereadilyaccountedforinEq.(19).Thecontributionstothestiffnessfromthosenotpar-alleltothebeamandtheprestressingreinforcement(PR),willhoweverbecalculatedinthefollowingsection.ThedisplacementincrementoftwoendsoftheprestressingreinforcementinFig.3canbeexpressedbyEq.(21):nwhichkepandkσarerespectivelytheelasto-plasticandthegeometricstiffnessmatrixes,?δisthenodaldisplacementvector,and?fisthenodalforcevectoroftheprestressingreinforcementelementinthelocalcoordinatesystem.AccordingtoFig.4,?δand?fcanbewrittenintheformThenthestiffnessmatrixep(k+k)σoftherein-accordingly.CFSTarchrib,steelgirderorsteel-concretegirderelementThefibermodelmentionedabovecanalsobeusedtosimulatetheCFSTarchrib,steelstiffeninggirderorsteel-concretecompositestiffeninggirder,withsimilarelasto-plasticstiffnessmatrixandstiff-nessequation.Thedetaileddescriptionofthedeductioncanbefoundin(Xieetal.,2005).However,fortheCFSTarchrib,thestress-strainrelationofstructureisverycomplexduetothecom-binedinfluenceoftheconfinedconcreteandoutersteeltube.Inthispaper,thefollowingstress-strainrelationconsideringtheconfinementeffectofthesteeltubering(Han,2000)isadopted:whereσytandσycaretheyieldstrengthsofthetensionandcompressionsidesofthesteeltuberespectively,βtandβcarethecorrespondingcoefficients.Fig.5bdepictedthebilinearstress-strainrelationshipcon-Thesecondarymodulusofthesteeltubetendencyoflocalbucklingofthesteeltube,isassumedtobe1%oftheinitialelasticmodulus.HangerelementThemechanicalbehaviorofcablessuchasthatofhangersandtiebars,issimilartothatoftrussele-ments,exceptthatcablescannotbearcompressiveelasto-plasticcomputationtheoryofflexiblecableconsideringtheeffectofsagwaspresentedby(Xieeal.,1998).Inmostbridges,however,saghaslittlefectonthemechanicalbehaviorofhangers.Hence,hangersofarchbridgesaretreatedaselasto-plastictrusseswithnocompressionstrength,andthestiff-nessequationisexpressedbyEq.(22).PROGRAMSCHEMEFORULTIMATEBEARINGCAPACITYCALCULATIOerectionwithoutbrackets,andconsistsofmanyconstructionstages.Thus,thefunc-tionofsimulatingtheconstructionprocessmustbetakenintoaccountinthedevelopedprogramforcal-culatingultimatebearingcapacity,includingthegradualactionofload,thestep-by-stepformationofthestructure,theinfluenceofinitialdisplacementandinitialstress.TheschemefortheprogramisindicatedinFig.6.Themodifiedarc-lengthincrementtecniqueisadoptedtosolvetheresultingnonlinearequation(Crisfield,1981).VALIDATIONOFTHEMETHODFORAPCGIRDERTheaccuracyofcomputationoftheultimatestrengthforCFSTelementhasbeenconfirmedin(Xieetal.,2005).Inthispaper,theprecisionofthepresenttheoryischeckedforaPCgirderbycomparisonwiththeexperimentalresult.Fig.7showsthecross-sectionandreinforcementsofthegirder,whichspans13m,with9bundlesofprestressingreinforcementsand11branchesofnonprestressingreinforcedbars.Thedesignstrengthoftheconcreteis22.4MPa,andthoseofnonprestressingreinforcedbarsAandBdepictedinFig.7aare195MPaand280MParespectivelyofwhichthediametersare12mmand8mm.Theprestressingreinforcementishigh-strengthlow-rela-xationsteelstrandwithdesignstrengthof1860MPaandthecontrolforceofeachbundleisNk=195kN.MoredetailedinformationabouttheexperimentonthisPCgirderisavailablein(Chen,2005).ComparisonofthedeflectionatthemidspanisdepictedinFig.8,showinggoodconsistencybetweenhenumericalsimulationandexperimentalresult.Fig.5Stress-straincurvesofsteeltube(a)Yieldcondition;(b)Stress-strainrelationshipAPPLICATIONINBRIDGEDESIGNTheultimatestrengthofFenghuajiangBridgeinNingbo,Zhejiang,Chinaisstudiedinvolvingtheeffectofconstructionprocesstodemonstratetheapplicabilityofthepresentapproachinbridgedesign.Fig.9showsthedesignschemeofFenghuajiangBridgewhichisagirderandarchcombinationbridgewithcentralspanof138m.ThecentralspanofthestiffeninggirderismadeupofsteelandPCcompositebox.ThesidespanofthestiffeninggirderismadeupofPCbox.TheabnormalCFSTarchinthecentralspaniscomposedofthreearches,withonemainarchribinthecenterandtwosecondaryarchribs.Thediameterofthemainarchribis1.8m,andthoseoftheothertwoare1.5m.Thedesignstrengthoftheconcreteusedinthebridgeis22.4MPa.ThearchribsarelinkedwithsteelpipesandI-steelbearingmembers,formingatrussarchbridge.Themainarchandthedeckareconnectedwithverticalhangers.Thesecondaryarchesandthedeckareconnectedwithinclinedhangers.Totakeintoaccounttheeffectoftheconstructionmethodontheultimatebearingcapacity,itisassumedthatthebridgeisconstructedbytwokindsofmethods.InCaseI,thereisonlyaconstructionprocess,thesupportingframesforconstructionfallingonceafterthecompletionofthewholebridge.InCaseII,therearetwoconstructionprocesses,asshowninFig.10.ThefirstprocessisconstructionofthePCgirderonthesupportingframes.Thesecondprocessistofixthesteelgirder,assemblethearchrib,andtensionthetie-barandhangerstoseparatethesteelgirderfromtheframe.Prestressingreinforcementsinthegirderareproperlysimulatedinconstructionstages,butthereinforcedbarsarenotmodelledduetotheirlargenumber.Theelasto-plasticmechanicalbehaviorsofCFSTarchribs,hanger,bearingmember,steelpipe,tie-bar,etc.areanalyzed.TheultimatestrengthanalysisprocessisshowninFig.11.First,theinitialstressoftheestablishedbridgeiscalculatedunderdeadloadandprestressingforceincludinginitialtensionofthehangers,thetieandprestressingreinforcements.Thenthestressandisplacementunderliveloadarecomputed.Atlast,Theout-of-planedeformationcurvesatthequarterpointsofthemainarchribareshowninFig.14.TheverticalaxisdenotestheloadcoefficientμwhichdoesnotcontaintheoriginaldeadloadandliveloadexertedinFigs.11aand11b.When3.1≤μ≤3.2,thenonlinearbehaviorofthearchribbecomesobviousinthelateraldirection.Asshowninthefigure,thebucklingmodesinbothcasesareantisymmetricout-of-plane,andthebucklingloadfactorofthearchribisabout4.1consideringtheinitialdeadandliveload.AcomparisonofthelateralandverticaldeforMationsatthequarterpointofthemainarchbetweentwocasesisshowninFig.15,showingthatthedeviationoftheload-displacementcurvesofthetwocasesisverysmall,indicatingthattheinfluenceoftheconstructionmethodonthestabilitystrengthisveryslight.Besides,whenout-of-planebucklingoccurs,thebridgestillhascertainverticalstiffness.CONCLUSIONInanalyzingtheultimatestrengthoftheCFSTarchbridgeswithstiffeninggirders,simulatingthenonlinearbehaviorofstiffeninggirdersisasimpor-tantasthatoftheCFSTarchribduetotheredistributionofinnerforcebetweenarchribsandstiffeninggirders.Inthispaper,ananalyticalapproachforestimatingtheultimatebearingcapacityofCFSTarchbridgewithstiffeninggirderisproposed,whichtakesaccountoftheeffectsofmaterialandgeometricnonlinearityandthecontributionofprestressingreinforcement.Basedonthefiberbeamelementtheory,thedegreesoffreedomofthewholestructurecanbereduced,makingitveryfeasibletopredicttheultimatestrengthofthecomplexstructure.TheaccuracyofthepresentmethodwasexaminedbycomparisonwiththeexperimentalresultsforaPCgirder.Todemonstratetheapplicabilityofthepresentapproachinbridgedesign,theultimatestrengthofanabnormalCFSTarchbridgewithstiffeninggirderisstudiedconsideringtheeffectofconstructionprocess.Theresultshowsthattheconstructionprocessinfluencestheinitialinternalforceofthebridgesignificantly.Butithaslittleeffectontheultimatestrengthofthebridge.Therefore,therelativelyaccuratestabilitystrengthcanbeobtainedbyignoringtheinfluenceoftheconstructionprocess.ReferencesChen,H.Z.,2005.ResearchofCalculationandAnalysisofPCBoxGirderStructurewithLongSpan.Ph.DThesis,ZhejiangUniversity(inChinese).Chen,B.C.,Chen,Y.J.,2000.Experimentalstudyonme-chanicbehaviorsofconcrete-filledsteeltubularribarchunderin-planeloads.EngineeringMechanics,17(2):44-50(inChinese).Chen,B.C.,Wei,J.G.,Lin,J.Y.,2006.Experimentalstudyonconcretefilledsteeltubular(singletube)archwithoneribunderspatialloads.EngineeringMechanics,23(5):99-106(inChinese).Crisfield,M.A.,1981.Afastincrementaliterativesolutionprocedurethathandles“snapthrough”.ComputerandStructures,13(1-3):55-62.[doi:10.1016/0045-7949(81)90108-5]Cui,J.,Sun,B.N.,Lou,W.J.,Yang,L.X.,2004.Modelteststudyonconcrete-filledsteeltubetrussarchbridge.EngineeringMechanics,21(5):83-86(inChinese).e,X.,Chen,H.Z.,Li,H.,Song,S.R.,2005.Numericalanalysisofultimatestrengthofconcretefilledsteeltu-bulararchbridges.JournalofZhejiangUniversitySCI-ENCE,6A(8):859-868.[doi:10.1631/jzus.2005.A0859]Zeng,G.F.,Fan,L.C.,Zhang,G.Y.,2003.Loadcapacityanalysisofconcretefilledsteeltubearchbridgewiththecompositebeamelement.JournaloftheChinaRailwaySociety,25(5):97-102(inChinese).Zhang,Z.A.,Sun,Y.,Wang,M.Q.,2003.KeytechniqueintheerectionprocessoftheribsteelpipetrusssegmentsforWushanYangzeRiverbridge.Highway,12:26-32(inChinese).Zhang,Y.,Shao,X.D.,Cai,S.B.,Hu,J.H.,2006.Spatialnonlinearfiniteelementanalysisforlong-spantrussedCFSTarchbridge.ChinaJournalofHighwayandTransport,19(4):65-70(inChinese).Zhao,L.Q.,Xu,R.H.,Zheng,X.Z.,2004.OveralldesignofthefourthQiantangjiangRiverBridgeinHangzhou.BridgeConstruction,1:27-30(inChinese).翻譯:分析鋼管混凝土拱橋與加勁梁的極限強(qiáng)度的方法摘要:提出的方法是分析和研究負(fù)載承載能力的終極鋼管混凝土鋼管混凝土(加勁梁與鋼管混凝土拱橋)。纖維模型梁?jiǎn)卧狝是專門用來模擬在加勁梁和鋼管混凝土拱肋。非線性的幾何,材料,施工過程的影響和貢獻(xiàn)。本方法的精度是通過比較其結(jié)果與驗(yàn)證實(shí)驗(yàn)的結(jié)果。最后,由于最終的鋼管混凝土拱橋異常是與梁的高度和施工方法的效果是討論。它得出結(jié)論,是建筑過程的影響。因?yàn)樾〉脑蛴绊戇@座橋。關(guān)鍵詞:極限強(qiáng)度,混凝土鋼管混凝土鋼管(鋼管混凝土)鋼拱大橋,加勁梁,纖維模型梁?jiǎn)卧ㄔO(shè)流程介紹:增加混凝土的應(yīng)用鋼管混凝土鋼管(鋼管混凝土)鋼結(jié)構(gòu)土木工程,在中國(guó)有一個(gè)競(jìng)爭(zhēng)方式或中等跨度跨度的拱形橋梁。杭州復(fù)興大橋的酒店,與重慶市巫山大橋。因此,它是有偉大的失敗的理論水平的重要性。鋼管混凝土拱橋的設(shè)計(jì)與安全經(jīng)濟(jì)。極限承載力的計(jì)算是一個(gè)在鋼管混凝土拱橋設(shè)計(jì)的重要問題。作為拱形結(jié)構(gòu)主要承受壓縮性力,鋼管混凝土拱橋的極限承載力通過穩(wěn)定性的要求確定。一些理論進(jìn)行了研究,在過去的調(diào)查的穩(wěn)定性和承載能力鋼管混凝土拱橋。利用復(fù)合材料梁的鋼管混凝土拱橋承載力。推導(dǎo)的切線剛度矩陣空間鋼管混凝土桿單元采用共旋坐標(biāo)法位移。謝提出了一種數(shù)值方法來阻止極限強(qiáng)度的鋼管混凝土拱橋和表明,影響約束混凝土不顯著。胡等人研究了對(duì)核心混凝土的泊松比的影響—對(duì)大跨度混凝土極限承載力鋼管混凝土拱橋的承載能力和發(fā)現(xiàn)提高10%如果泊松比是可變的。另一方面,在許多的實(shí)驗(yàn)研究裸鋼管混凝土拱肋鋼管混凝土極限強(qiáng)度或拱橋模型進(jìn)行了。實(shí)驗(yàn)對(duì)鋼管混凝土拱肋的面內(nèi)的研究面外的負(fù)載是由陳等人。表明測(cè)量非線性顯著的出于對(duì)橋梁的強(qiáng)度和不重要面內(nèi)強(qiáng)度。由崔等人(2004)引入了全球。對(duì)鋼管混凝土拱橋的跨徑308米的模型試驗(yàn),并建議初始應(yīng)力的影響應(yīng)考慮。以上的論文主要集中在最終的鋼管混凝土拱肋強(qiáng)度裸體或鋼管混凝土拱浮動(dòng)橋。沒有嘗試了研究鋼管混凝土拱橋極限承載力與加勁梁的非線性行為鋼管混凝土拱橋由于要模擬的再分配—拱肋和加勁之間的內(nèi)力梁,在一般情況下,加勁梁可以分為鋼桁梁,PC(預(yù)應(yīng)力混凝土)梁鋼-混凝土組合梁。這是最困難的模擬預(yù)應(yīng)力混凝土梁的非線性行為,由于預(yù)應(yīng)力筋的影響。其不僅在PC梁預(yù)應(yīng)力筋直接提供的強(qiáng)度和剛度。本文的目的是:(1)提出了一個(gè)彈—對(duì)鋼管混凝土的極限強(qiáng)度的塑性分析任意加勁梁拱橋;(2)對(duì)研究了COM的極限承載力—異常復(fù)雜的鋼管混凝土拱橋拱肋和PC加勁梁;和(3)探討在最終的施工方法的影響的結(jié)構(gòu)強(qiáng)度。分析理論彈塑性大變形PC梁元的彈塑性大變形分析PC梁元素護(hù)套心理假設(shè):正常中性軸的平面和正常總是在中性軸的變形;剪切變形剪切應(yīng)力被忽視的;(3)扭轉(zhuǎn)彈塑性階段;(4)剪切應(yīng)力的應(yīng)力-應(yīng)變的影響關(guān)系被忽略。有一個(gè)PC箱梁截面對(duì)稱軸在圖1所示,其中,G和S表示的幾何中心和剪切中心重新—兩。根據(jù)第一和第三—假設(shè)以上,位移增量點(diǎn)(x,y)的截面可以表示在幾何體的位移增量中心和剪切中心其中?WG是縱向位移—點(diǎn)G增加,?US?V和S的位移增量的點(diǎn)在X和Y方向重新—兩?θ,Z是扭角增量。線性應(yīng)變?cè)隽?,非線性n剪應(yīng)變?cè)隽俊?γ管理點(diǎn)(x,y)的橫截面可采用更新的拉格朗日公式表示。其中KTor是的,相關(guān)系數(shù)梁的截面形狀。fig.1截面of

a

PC箱梁類似于三維彈性梁理論,DIS—梁的位置增量可以表示為的節(jié)點(diǎn)位移增量為在這表示的元素長(zhǎng)度L和Z是在本地坐標(biāo)系統(tǒng)的坐標(biāo)軸,在元素。然后,位移矢量的任何部分元素可以是書面的。?任一截面的位移矢量梁?jiǎn)卧琋為形函數(shù)矩陣和?UE為單元的節(jié)點(diǎn)位移向量。他們分別表示為根據(jù)式(2),線性應(yīng)變可以前—壓其中B是元素的線性應(yīng)變矩陣相應(yīng)地,非線性應(yīng)變能表示為其中B是電子的非線性應(yīng)變矩陣—應(yīng)力增量?σ可以近采用線性應(yīng)變?cè)隽科渲蠨是材料特性矩陣。忽略剪應(yīng)變的影響,D可以表示作為其中E(ε)是材料的切線模這是依賴于應(yīng)變狀態(tài),和G是彈性剪切模量為常數(shù)。根據(jù)虛功原理,我們有這是應(yīng)力矢量?σσ和應(yīng)當(dāng)前狀態(tài)增量,Q和P的DIS—分布荷載和集中荷載向量,Q和P??是分布荷載和集中增量—代式。(9),(11)(14)代入式(16)和忽略無窮小量?σ?n,我們有在?FE是單元荷載向量的增量對(duì)應(yīng)于?UE,單元位移矢量—Tor。KEP和K在彈塑性與幾何梁?jiǎn)卧膭偠染仃嚪謩e為如下彈性和塑性區(qū)分布非均勻。這是目前的一個(gè)顯式非常困難整個(gè)的屬性矩陣D的表達(dá)部分。因此,該部分為許多,如圖2所示,和纖維模型通過計(jì)算單元的剛度矩陣,即顯然,如果分區(qū)的數(shù)量是足夠的—足夠大,公式的結(jié)果接近精確解。K值EP計(jì)算使用數(shù)值積分,D我被視為在一個(gè)恒定的分區(qū)?。計(jì)算幾何剛度矩陣,正常的應(yīng)力方面的表達(dá)軸力和彎矩,這實(shí)際上已經(jīng)對(duì)幾何剛度的貢獻(xiàn)很小,所以其中n是軸向力,一個(gè)是截面積。預(yù)應(yīng)力鋼筋單元鋼筋平行于梁軸線可作為纖維,其貢獻(xiàn)的剛度可占在式(19)。從那些未對(duì)剛度的貢獻(xiàn)—平行于梁和預(yù)應(yīng)力加固(PR),但會(huì)在下面的計(jì)算部分。對(duì)兩端的位移增量預(yù)應(yīng)力加固圖可以表示忽略彎曲剛度,剛度PR方程可以表示為其中KEP*和K*分別是彈塑性和幾何剛度矩陣,?是節(jié)點(diǎn)位移向量,并?F*是的對(duì)預(yù)應(yīng)力加固節(jié)點(diǎn)力向量部坐標(biāo)系中的元素。根據(jù)圖4,?*和?F*可以以書面的形式PR的節(jié)點(diǎn)力也應(yīng)翻譯對(duì)梁?jiǎn)卧娜缓?,彈塑性剛度矩陣of

Pr單元坐標(biāo)系統(tǒng)中的束元件可以得到。然后剛度矩陣EP(K+K)在的增強(qiáng)可以被添加到梁的剛度矩陣。鋼管混凝土拱肋梁,鋼或鋼-混凝土組合梁元該模型也可以是上面提到的纖維用于鋼管混凝土拱肋的鋼-混凝土組合梁或加勁梁;與類似的彈塑性剛度矩陣和斯蒂夫-尼斯方程。詳細(xì)說明的推理-方法可以發(fā)現(xiàn)在(謝等人,2005年)。然而,對(duì)鋼管混凝土拱肋的應(yīng)力-應(yīng)變的結(jié)構(gòu)是非常復(fù)雜的關(guān)系,由于該COM-bined影響的約束混凝土和外鋼管。在σ和ε是縱向壓縮應(yīng)應(yīng)變分別,和其中Fck被壓縮的特征值混凝土強(qiáng)度(MPa),一個(gè)C是混凝土的面積(M2),和FY是產(chǎn)量鋼管強(qiáng)度(MPa)。徑向應(yīng)力σ之間的相互作R和切向應(yīng)力一直被認(rèn)為是計(jì)算—對(duì)其抗拉和抗壓強(qiáng)度的關(guān)系鋼管。據(jù)屈服準(zhǔn)則如圖5,我們有在YT和YC的拉伸屈服強(qiáng)度并分別對(duì)鋼管壓邊,T和C有相應(yīng)的系數(shù)。圖5B描述的雙線性應(yīng)力-應(yīng)變關(guān)系—考慮材料的硬化。二次模的鋼管EH,這是兩種材料的性能和與之相關(guān)的對(duì)鋼管的局部屈曲的趨勢(shì),如—總結(jié)為1%的初始彈性模量。懸掛元件電纜如力學(xué)行為吊桿和系桿,類似于桁架單元—結(jié)果,除了電纜不能承受壓力力和初始垂度會(huì)影響其剛度。計(jì)算理論考慮到凹陷的影響(Xie等提出的L.,1998)。然而,在大多數(shù)的橋梁有力學(xué)行為的影響。因此,拱橋吊桿視為彈塑性沒有壓縮強(qiáng)度和剛性桁架—狀態(tài)方程表示由方程(22)。承載方案容量計(jì)算像往常一樣,大跨度鋼管混凝土拱橋結(jié)構(gòu)—由逐步安裝沒有括號(hào),和由多個(gè)施工階段。因此,功能—模擬施工過程必須在所開發(fā)的程序計(jì)算考慮—計(jì)算極限承載力,包括負(fù)荷逐步動(dòng)作,逐步形成的結(jié)構(gòu),初始位移的影響初始應(yīng)力。該程序的格式顯示圖6。改進(jìn)的弧長(zhǎng)增量技術(shù)—方法是通過解決產(chǎn)生的非線性方程(克里斯菲爾德,1981)。一個(gè)PC機(jī)的方法驗(yàn)證梁對(duì)最終的計(jì)算精度鋼管混凝土構(gòu)件的強(qiáng)度已經(jīng)確認(rèn)(謝等人。,2005)。在本文中,的精度目前的理論是由COM檢查PC梁—與實(shí)驗(yàn)結(jié)果的比較。圖7顯示截面加固—的梁,跨度13米,9條預(yù)應(yīng)力筋和鋼筋。設(shè)計(jì)強(qiáng)度混凝土的22.4MPa,與那些非—預(yù)應(yīng)力鋼筋和B描繪fig.7a

195

MPa和280MPa,分別它的直徑為12毫米和8毫米。的預(yù)應(yīng)力筋與高強(qiáng)低—1860兆帕的強(qiáng)度設(shè)計(jì)固定鋼絞線和每一個(gè)束的控制力NK=

195kN。更多關(guān)于實(shí)驗(yàn)的詳細(xì)信息此PC梁可在(陳,2005)。在跨中撓度比較描繪在圖,顯示出良好的一致性數(shù)值模擬和實(shí)驗(yàn)結(jié)果。圖6計(jì)劃方案的極限承載力計(jì)算在橋梁設(shè)計(jì)中的應(yīng)用中國(guó)浙江寧波的奉化江大橋的研究涉及施工過程中顯示AP的影響—在橋梁設(shè)計(jì)方法的可行性。圖9顯示奉化江的設(shè)計(jì)方案橋梁是梁拱組合橋橫截面和梁的鋼筋(單位:厘米)。(一)鋼筋;(b)預(yù)應(yīng)力筋圖的計(jì)算與實(shí)驗(yàn)結(jié)果的比較(一)荷載-變形曲線的情況下;(b)為案例II荷載-變形曲線與138米,中心跨度的中央跨度加勁梁是由鋼和PC復(fù)合材料箱。主梁邊跨了PC箱。在中央的異常鋼管混凝土拱跨度是由三個(gè)拱,主拱肋在中心和兩個(gè)次要的拱肋。的主拱圈的直徑是1.8米。其他兩個(gè)是1.5米的結(jié)論設(shè)計(jì)強(qiáng)度—用于橋梁22.4MPa。用鋼管、工字鋼軸承聯(lián)系,形成一個(gè)桁架拱橋。主拱和甲板連接立式衣架??紤]到結(jié)構(gòu)的影響—對(duì)極限承載力的方法,它是假定橋是由兩種構(gòu)造方法。只有一個(gè)施工施工過程,F(xiàn)AL的支撐架—凌一旦全橋建成后。在案例二,有兩種施工工藝,為如圖所示。第一個(gè)過程是建設(shè)在支撐架的PC梁。第二過程是固定鋼梁,安裝拱肋,張力系桿和衣架分開從鋼梁框架。在梁預(yù)應(yīng)力筋在施工階段合理的模擬,但鋼筋模型由于其巨大的數(shù)。彈塑性力學(xué)行為鋼管混凝土拱肋,衣架,承載構(gòu)件,鋼管,拉桿,等進(jìn)行了分析。極限強(qiáng)度分析過程顯示圖11。首先,對(duì)所建立的初始應(yīng)力橋在恒載、預(yù)應(yīng)力計(jì)算力包括吊桿初始張拉力,領(lǐng)帶和預(yù)應(yīng)力筋。然后,應(yīng)力活載作用下的位移計(jì)算。最后,圖10案例的建設(shè)過程。(a)構(gòu)造PC箱梁的第一幀,按流程);(b)修復(fù)鋼管混凝土拱肋,鋼掛梁,和領(lǐng)帶棒(第二過程)他研究了荷載比例極限強(qiáng)度—施加在橋上的弧長(zhǎng)—增量法。每一步的初始狀態(tài)的基礎(chǔ)在最后一步的結(jié)果。施工方法的影響初始內(nèi)力的影響。軸向力和主拱肋彎矩顯示圖中,顯示的初始內(nèi)力兩種施工方法的相對(duì)差異對(duì)軸向力的10%和25%彎矩。屈曲模式對(duì)兩種施工方法是描繪在圖。這座橋優(yōu)先級(jí)—主要承受豎向荷載,因此變形主要是在垂直的平面。然而,為了獲得的出平面屈曲模式,一個(gè)小的出平面的初始位移設(shè)定模擬安裝誤差。它是觀察到的屈曲模態(tài)這兩種方法都很相似。圖12縱向分布的初始內(nèi)兩例在中拱的力量。(一)軸向力;(b)彎矩圖的屈曲模態(tài)的橋梁(一)我的情況下的屈曲模態(tài);(b)為案例II的屈曲模態(tài)平面外的變形曲線在對(duì)主拱肋節(jié)點(diǎn)列圖。豎軸表示負(fù)載系數(shù)的μ不包含原始的恒載和活載在figs.11a和11B施加。當(dāng)3.1≤μ≤的3.2,拱肋的非線性行為變得明顯橫向方向。如圖所示,該在這兩種情況都反對(duì)稱屈曲模態(tài)平面外屈曲荷載因子,并對(duì)拱肋約4.1考慮初橫向和縱向的變形比較—系在四分之一點(diǎn)的主拱之間兩例圖所示,顯示出德—對(duì)兩種荷載-位移曲線的偏差例很小,表明的影響在穩(wěn)定強(qiáng)度的施工方法是非常輕微的。此外,當(dāng)平面外屈曲的發(fā)生,橋雖然具有一定的豎向剛度。的荷載-變形曲線的比較兩例。(a)在四分之一點(diǎn)的側(cè)向變形在中拱;(b)在豎向變形在中拱點(diǎn)結(jié)論在分析鋼管混凝土的極限強(qiáng)度加勁梁拱橋,模擬加勁梁的非線性行為是重要的—重要的是,鋼管混凝土拱肋的重—拱肋和加勁之間的內(nèi)力分布梁。在本文中,ES的一種分析方法—估算年鋼管混凝土拱的極限承載力提出了加勁梁橋,以的材料和幾何效應(yīng)的帳戶非線性和預(yù)應(yīng)力的貢獻(xiàn)—加固?;诶w維梁元理論,整體結(jié)構(gòu)的自由度可減少,使其預(yù)測(cè)多非常可行—復(fù)雜結(jié)構(gòu)的伴侶強(qiáng)度。的準(zhǔn)確性本方法進(jìn)行比較對(duì)預(yù)應(yīng)力混凝土梁的試驗(yàn)結(jié)果。表明目前的適用性.在橋梁的設(shè)計(jì)方法,對(duì)極限強(qiáng)度與加勁梁異常的鋼管混凝土拱橋考慮施工過程影響的研究。結(jié)果表明,施工過程的影響—方法對(duì)橋梁的初始內(nèi)力—明顯。但對(duì)極限強(qiáng)度的影響不大該橋。因此,相對(duì)準(zhǔn)確的統(tǒng)計(jì)—性強(qiáng)度可以忽略的影響,得到了—施工過程中的作用。工具書類陳,h.z.,2005。PC的計(jì)算與分析研究大跨度箱形梁結(jié)構(gòu)。博士論文,浙江大學(xué)(中國(guó))。chen,B,C,chen,Y,J2000。在我的實(shí)驗(yàn)研究—鋼管混凝土拱肋的機(jī)械行為在面內(nèi)載荷。工程力學(xué),17(2):44-50(中文)。2006年,陳BC,魏,J.G.,林,JY,。實(shí)驗(yàn)研究鋼管混凝土(單圓管)拱一肋下的空間荷載。工程力學(xué),23(5):99-106.(中文)。克里斯菲爾德,碩士,1981年??焖俚脑隽康慕鉀Q方案程序是處理“卡通”。計(jì)算機(jī)與結(jié)構(gòu),13(1):55-62。[我:/)10.1016

794(81)。90108

-

5]崔,J,SUN,B.N,樓,W.J,楊,l.x.,2004年。模型試驗(yàn)工程力學(xué),21(5):83-86(in

Chinese)。漢族,L,H,2000。鋼管混凝土結(jié)構(gòu)。科學(xué)出版社,北京,p.180-190(中文)。胡,Q,A,周,朱,XS,H,2006。泊松比的影響對(duì)鋼管混凝土極限下拱橋。中國(guó)應(yīng)用力學(xué)學(xué)報(bào)—集成電路,23(1):125-128(中文)。謝,X.,永井

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論