湖北省仙桃、天門、潛江市2024屆高三年級下學期4月月考數(shù)學試題試卷_第1頁
湖北省仙桃、天門、潛江市2024屆高三年級下學期4月月考數(shù)學試題試卷_第2頁
湖北省仙桃、天門、潛江市2024屆高三年級下學期4月月考數(shù)學試題試卷_第3頁
湖北省仙桃、天門、潛江市2024屆高三年級下學期4月月考數(shù)學試題試卷_第4頁
湖北省仙桃、天門、潛江市2024屆高三年級下學期4月月考數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省仙桃、天門、潛江市2024屆高三年級下學期4月月考數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種2.已知,則的大小關系是()A. B. C. D.3.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.4.我國古代數(shù)學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.15.已知復數(shù)z滿足i?z=2+i,則z的共軛復數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i6.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.7.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內的面積為()A. B. C. D.8.若sin(α+3π2A.-12 B.-139.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則10.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.11.已知,則的大小關系為()A. B. C. D.12.已知,則的大小關系為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.集合,,則_____.14.函數(shù)的定義域是__________.15.運行下面的算法偽代碼,輸出的結果為_____.16.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(選修4-4:坐標系與參數(shù)方程)在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.18.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設點,若直線與曲線相交于、兩點,求的值20.(12分)已知,,為正數(shù),且,證明:(1);(2).21.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.22.(10分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

根據(jù)題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【題目詳解】解:根據(jù)題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【題目點撥】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.2、B【解題分析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質比較a,c進而可得結論.【題目詳解】依題意,函數(shù)與函數(shù)關于直線對稱,則,即,又,所以,.故選:B.【題目點撥】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎題.3、D【解題分析】

以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【題目詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【題目點撥】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.4、B【解題分析】

將問題轉化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【題目詳解】根據(jù)實際問題可以轉化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【題目點撥】本題考查等比數(shù)列的實際應用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.5、D【解題分析】

兩邊同乘-i,化簡即可得出答案.【題目詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復數(shù)為1+2i,選D.【題目點撥】的共軛復數(shù)為6、B【解題分析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【題目詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【題目點撥】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.7、B【解題分析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【題目詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【題目點撥】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.8、B【解題分析】

由三角函數(shù)的誘導公式和倍角公式化簡即可.【題目詳解】因為sinα+3π2=3故選B【題目點撥】本題考查了三角函數(shù)的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.9、D【解題分析】試題分析:,,故選D.考點:點線面的位置關系.10、C【解題分析】

根據(jù)可得四邊形為矩形,設,,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【題目詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【題目點撥】本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.11、A【解題分析】

根據(jù)指數(shù)函數(shù)的單調性,可得,再利用對數(shù)函數(shù)的單調性,將與對比,即可求出結論.【題目詳解】由題知,,則.故選:A.【題目點撥】本題考查利用函數(shù)性質比較大小,注意與特殊數(shù)的對比,屬于基礎題..12、D【解題分析】

分析:由題意結合對數(shù)的性質,對數(shù)函數(shù)的單調性和指數(shù)的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

分析出集合A為奇數(shù)構成的集合,即可求得交集.【題目詳解】因為表示為奇數(shù),故.故答案為:【題目點撥】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.14、【解題分析】由,得,所以,所以原函數(shù)定義域為,故答案為.15、【解題分析】

模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【題目詳解】模擬程序的運行過程知,該程序運行后執(zhí)行:.故答案為:【題目點撥】本題考查算法語句中的循環(huán)語句和裂項相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關鍵;屬于基礎題.16、192【解題分析】

根據(jù)題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【題目詳解】根據(jù)題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【題目點撥】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線:,直線的直角坐標方程;(2)1.【解題分析】試題分析:(1)先根據(jù)三角函數(shù)平方關系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標方程化為直角坐標方程;(2)根據(jù)題意設直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設兩點所對應的參數(shù)分別為,則,.18、(1)證明見解析(2)【解題分析】

(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系,分別求出平面和平面的法向量,帶入公式求解即可.【題目詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系.如圖所示:則,,,.∴,,.設為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的正弦值為.【題目點撥】本題第一問考查線線垂直,先證線面垂直時解題關鍵,第二問考查二面角,建立空間直角坐標系是解題關鍵,屬于中檔題.19、(1)的普通方程為,的直角坐標方程為;(2).【解題分析】

(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標方程化為普通方程;(2)設直線的參數(shù)方程為(為參數(shù)),并設點、所對應的參數(shù)分別為、,利用韋達定理可求得的值.【題目詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標方程為;(2)設直線的參數(shù)方程為(為參數(shù)),代入,得,則,設、兩點對應參數(shù)分別為、,,,,,.【題目點撥】本題考查了參數(shù)方程、極坐標方程與普通方程之間的轉化,同時也考查了直線參數(shù)方程幾何意義的應用,考查計算能力,屬于中等題.20、(1)證明見解析;(2)證明見解析.【解題分析】

(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【題目詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【題目點撥】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.21、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解題分析】

(Ⅰ)可考慮采用補形法,取的中點為,連接,可結合等腰三角形性質和線面垂直性質,先證平面,即,若能證明,則可得證,可通過我們反推出點對應位置應在處,進而得證;(Ⅱ)采用建系法,以為坐標原點,以分別為軸建立空間直角坐標系,分別求出兩平面對應法向量,再結合向量夾角公式即可求解;【題目詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論