2024屆青海省西寧市示范名校高三1月調(diào)研考試數(shù)學(xué)試題_第1頁
2024屆青海省西寧市示范名校高三1月調(diào)研考試數(shù)學(xué)試題_第2頁
2024屆青海省西寧市示范名校高三1月調(diào)研考試數(shù)學(xué)試題_第3頁
2024屆青海省西寧市示范名校高三1月調(diào)研考試數(shù)學(xué)試題_第4頁
2024屆青海省西寧市示范名校高三1月調(diào)研考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆青海省西寧市示范名校高三1月調(diào)研考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.112.若雙曲線的一條漸近線與圓至多有一個交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.3.如圖,棱長為的正方體中,為線段的中點(diǎn),分別為線段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.4.設(shè)過點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,為坐標(biāo)原點(diǎn),若,且,則點(diǎn)的軌跡方程是()A. B.C. D.5.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動,則面積的最小值為()A.6 B.3 C. D.6.已知向量,,若,則與夾角的余弦值為()A. B. C. D.7.已知實(shí)數(shù)、滿足約束條件,則的最大值為()A. B. C. D.8.中國鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達(dá)到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營里程增加最顯著B.從2014年到2018年這5年,高鐵運(yùn)營里程與年價正相關(guān)C.2018年高鐵運(yùn)營里程比2014年高鐵運(yùn)營里程增長80%以上D.從2014年到2018年這5年,高鐵運(yùn)營里程數(shù)依次成等差數(shù)列9.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④10.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.11.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在平行四邊形中,已知,,,若,,則____________.14.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.15.已知為橢圓內(nèi)一定點(diǎn),經(jīng)過引一條弦,使此弦被點(diǎn)平分,則此弦所在的直線方程為________________.16.平面向量,,(R),且與的夾角等于與的夾角,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.18.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報(bào)名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語水平測試,所得成績(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計(jì)在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)19.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.20.(12分)已知橢圓C:(a>b>0)的兩個焦點(diǎn)分別為F1(-,0)、F2(,0).點(diǎn)M(1,0)與橢圓短軸的兩個端點(diǎn)的連線相互垂直.(1)求橢圓C的方程;(2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.21.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.22.(10分)設(shè)數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】

根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【題目詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候?yàn)檫^點(diǎn)的時候,解得所以,此時故選A項(xiàng)【題目點(diǎn)撥】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.2、C【解題分析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【題目詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【題目點(diǎn)撥】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.3、D【解題分析】

取中點(diǎn),過作面,可得為等腰直角三角形,由,可得,當(dāng)時,最小,由,故,即可求解.【題目詳解】取中點(diǎn),過作面,如圖:則,故,而對固定的點(diǎn),當(dāng)時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【題目點(diǎn)撥】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.4、A【解題分析】

設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算表示出,從而可利用表示出;由坐標(biāo)運(yùn)算表示出,代入整理可得所求的軌跡方程.【題目詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【題目點(diǎn)撥】本題考查動點(diǎn)軌跡方程的求解,涉及到平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算;關(guān)鍵是利用動點(diǎn)坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算可整理得軌跡方程.5、B【解題分析】

求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【題目詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【題目點(diǎn)撥】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.6、B【解題分析】

直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【題目詳解】依題意,,而,即,解得,則.故選:B.【題目點(diǎn)撥】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.7、C【解題分析】

作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點(diǎn)時,取得最大值.【題目詳解】解:作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時,取得最大值,最大值為.故選:C.【題目點(diǎn)撥】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.8、D【解題分析】

由折線圖逐項(xiàng)分析即可求解【題目詳解】選項(xiàng),顯然正確;對于,,選項(xiàng)正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯.故選:D【題目點(diǎn)撥】本題考查統(tǒng)計(jì)的知識,考查數(shù)據(jù)處理能力和應(yīng)用意識,是基礎(chǔ)題9、D【解題分析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【題目詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)椋云矫?,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因?yàn)椋云矫?,所以,又,所以平面,所以,因?yàn)椋燥@然與不可能垂直,故④正確.故選:D【題目點(diǎn)撥】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.10、A【解題分析】

求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【題目詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【題目點(diǎn)撥】本題考查函數(shù)的切線問題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.11、B【解題分析】

分別判斷充分性和必要性得到答案.【題目詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【題目點(diǎn)撥】本題考查了充分必要條件,屬于簡單題.12、A【解題分析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【題目點(diǎn)撥】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

設(shè),則,得到,,利用向量的數(shù)量積的運(yùn)算,即可求解.【題目詳解】由題意,如圖所示,設(shè),則,又由,,所以為的中點(diǎn),為的三等分點(diǎn),則,,所以.【題目點(diǎn)撥】本題主要考查了向量的共線定理以及向量的數(shù)量積的運(yùn)算,其中解答中熟記向量的線性運(yùn)算法則,以及向量的共線定理和向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、【解題分析】

由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【題目詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時,的最大值為.故答案為:.【題目點(diǎn)撥】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.15、【解題分析】

設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),利用點(diǎn)差法可求得直線的斜率,進(jìn)而可求得直線的點(diǎn)斜式方程,化為一般式即可.【題目詳解】設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),由于點(diǎn)為弦的中點(diǎn),則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【題目點(diǎn)撥】本題考查利用弦的中點(diǎn)求弦所在直線的方程,一般利用點(diǎn)差法,也可以利用韋達(dá)定理設(shè)而不求法來解答,考查計(jì)算能力,屬于中等題.16、2【解題分析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小值為,此時;(2)見解析【解題分析】

(1)由已知得,法一:,,根據(jù)二次函數(shù)的最值可求得;法二:運(yùn)用基本不等式構(gòu)造,可得最值;法三:運(yùn)用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【題目詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【題目點(diǎn)撥】本題考查運(yùn)用基本不等式,柯西不等式,絕對值不等式進(jìn)行不等式的證明和求解函數(shù)的最值,屬于中檔題.18、(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解題分析】

(Ⅰ)根據(jù)比例關(guān)系直接計(jì)算得到答案.(Ⅱ)的可能取值為,計(jì)算概率得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.(Ⅲ)英語測試成績在70分以上的概率為,故,解得答案.【題目詳解】(Ⅰ)樣本中女生英語成績在分以上的有人,故人數(shù)為:萬人.(Ⅱ)8名男生中,測試成績在70分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語測試成績在70分以上的概率為,故,故.故的最小值為.【題目點(diǎn)撥】本題考查了樣本估計(jì)總體,分布列,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1)(2)(i)(ii)分布列見解析,【解題分析】

(1)先計(jì)算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨(dú)立性即得解;(2)(i)分別計(jì)算每個事件的概率,再利用事件的獨(dú)立性即得解;(ii),利用事件的獨(dú)立性,分別計(jì)算對應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都選高校,共有四種情況,甲同學(xué)選高校的概率為,因此乙、丙兩同學(xué)選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲、乙、丙三名同學(xué)都選高校的概率為.(2)(i)甲同學(xué)必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲同學(xué)選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學(xué)期望為.【題目點(diǎn)撥】本題考查了事件獨(dú)立性的應(yīng)用和隨機(jī)變量的分布列和期望,考查了學(xué)生綜合分析,概念理解,實(shí)際應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(1);(2)m-n-1=0【解題分析】試題分析:(1)利用M與短軸端點(diǎn)構(gòu)成等腰直角三角形,可求得b的值,進(jìn)而得到橢圓方程;(2)設(shè)出過M的直線l的方程,將l與橢圓C聯(lián)立,得到兩交點(diǎn)坐標(biāo)關(guān)系,然后將k1+k3表示為直線l斜率的關(guān)系式,化簡后得k1+k3=2,于是可得m,n的關(guān)系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當(dāng)直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設(shè)A(1,),B(1,-)因?yàn)閗1+k3==2又

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論