版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
SolutionsManual
CRYPTOGRAPHYANDNETWORKSECURITY
PrinciplesandPractice
FourthEdition
WilliamStallings
Copyright2006:WilliamStallings
?2006by
CONTACT_Con-475D4AA31\c\s\l
WilliamStallings
Allrightsreserved.Nopartofthisdocumentmaybereproduced,inanyformorbyanymeans,orpostedontheInternet,withoutpermissioninwritingfromtheauthor.
Notice
ThismanualcontainssolutionstoallofthereviewquestionsandhomeworkproblemsinCryptographyandNetworkSecurity,FourthEdition.Ifyouspotanerrorinasolutionorinthewordingofaproblem,Iwouldgreatlyappreciateitifyouwouldforwardtheinformationviaemailtows@.Anerratasheetforthismanual,ifneeded,isavailableat.
W.S.
TABLEOFCONTENTS
Chapter1: Introduction 5
Chapter2: ClassicalEncryptionTechniques 7
Chapter3: BlockCiphersandtheDateEncryptionStandard 13
Chapter4: FiniteFields 21
Chapter5: AdvancedEncryptionStandard 28
Chapter6: MoreonSymmetricCiphers 33
Chapter7: ConfidentialityUsingSymmetricEncryption 38
Chapter8: IntroductiontoNumberTheory 42
Chapter9: Public-KeyCryptographyandRSA 46
Chapter10: KeyManagement;OtherPublic-KeyCryptosystems 55
Chapter11: MessageAuthenticationandHashFunctions 59
Chapter12: HashandMACAlgorithms 62
Chapter13: DigitalSignaturesandAuthenticationProtocols 66
Chapter14: AuthenticationApplications 71
Chapter15: ElectronicMailSecurity 73
Chapter16: IPSecurity 76
Chapter17: WebSecurity 80
Chapter18: Intruders 83
Chapter19: MaliciousSoftware 87
Chapter20: Firewalls 89
Chapter1
Introduction
AnswerstoQuestions
TheOSISecurityArchitectureisaframeworkthatprovidesasystematicwayofdefiningtherequirementsforsecurityandcharacterizingtheapproachestosatisfyingthoserequirements.Thedocumentdefinessecurityattacks,mechanisms,andservices,andtherelationshipsamongthesecategories.
1.2 Passiveattackshavetodowitheavesdroppingon,ormonitoring,transmissions.Electronicmail,filetransfers,andclient/serverexchangesareexamplesoftransmissionsthatcanbemonitored.Activeattacksincludethemodificationoftransmitteddataandattemptstogainunauthorizedaccesstocomputersystems.
1.3 Passiveattacks:releaseofmessagecontentsandtrafficanalysis.Activeattacks:masquerade,replay,modificationofmessages,anddenialofservice.
1.4 Authentication:Theassurancethatthecommunicatingentityistheonethatitclaimstobe.
Accesscontrol:Thepreventionofunauthorizeduseofaresource(i.e.,thisservicecontrolswhocanhaveaccesstoaresource,underwhatconditionsaccesscanoccur,andwhatthoseaccessingtheresourceareallowedtodo).
Dataconfidentiality:Theprotectionofdatafromunauthorizeddisclosure.
Dataintegrity:Theassurancethatdatareceivedareexactlyassentbyanauthorizedentity(i.e.,containnomodification,insertion,deletion,orreplay).
Nonrepudiation:Providesprotectionagainstdenialbyoneoftheentitiesinvolvedinacommunicationofhavingparticipatedinallorpartofthecommunication.
Availabilityservice:Thepropertyofasystemorasystemresourcebeingaccessibleandusableupondemandbyanauthorizedsystementity,accordingtoperformancespecificationsforthesystem(i.e.,asystemisavailableifitprovidesservicesaccordingtothesystemdesignwheneverusersrequestthem).
1.5 SeeTable1.3.
AnswerstoProblems
Releaseofmessagecontents
Trafficanalysis
Masquerade
Replay
Modificationofmessages
Denialofservice
Peerentityauthentication
Y
Dataoriginauthentication
Y
Accesscontrol
Y
Confidentiality
Y
Trafficflowconfidentiality
Y
Dataintegrity
Y
Y
Non-repudiation
Y
Availability
Y
Releaseofmessagecontents
Trafficanalysis
Masquerade
Replay
Modificationofmessages
Denialofservice
Encipherment
Y
Digitalsignature
Y
Y
Y
Accesscontrol
Y
Y
Y
Y
Y
Dataintegrity
Y
Y
Authenticationexchange
Y
Y
Y
Y
Trafficpadding
Y
Routingcontrol
Y
Y
Y
Notarization
Y
Y
Y
Chapter2
ClassicalEncryptionTechniquesr
AnswerstoQuestions
2.1 Plaintext,encryptionalgorithm,secretkey,ciphertext,decryptionalgorithm.
2.2 Permutationandsubstitution.
2.3 Onekeyforsymmetricciphers,twokeysforasymmetricciphers.
2.4 Astreamcipherisonethatencryptsadigitaldatastreamonebitoronebyteatatime.Ablockcipherisoneinwhichablockofplaintextistreatedasawholeandusedtoproduceaciphertextblockofequallength.
2.5 Cryptanalysisandbruteforce.
2.6 Ciphertextonly.Onepossibleattackunderthesecircumstancesisthebrute-forceapproachoftryingallpossiblekeys.Ifthekeyspaceisverylarge,thisbecomesimpractical.Thus,theopponentmustrelyonananalysisoftheciphertextitself,generallyapplyingvariousstatisticalteststoit.Knownplaintext.Theanalystmaybeabletocaptureoneormoreplaintextmessagesaswellastheirencryptions.Withthisknowledge,theanalystmaybeabletodeducethekeyonthebasisofthewayinwhichtheknownplaintextistransformed.Chosenplaintext.Iftheanalystisabletochoosethemessagestoencrypt,theanalystmaydeliberatelypickpatternsthatcanbeexpectedtorevealthestructureofthekey.
2.7 Anencryptionschemeisunconditionallysecureiftheciphertextgeneratedbytheschemedoesnotcontainenoughinformationtodetermineuniquelythecorrespondingplaintext,nomatterhowmuchciphertextisavailable.Anencryptionschemeissaidtobecomputationallysecureif:(1)thecostofbreakingthecipherexceedsthevalueoftheencryptedinformation,and(2)thetimerequiredtobreakthecipherexceedstheusefullifetimeoftheinformation.
2.8 TheCaesarcipherinvolvesreplacingeachletterofthealphabetwiththeletterstandingkplacesfurtherdownthealphabet,forkintherange1through25.
2.9 Amonoalphabeticsubstitutionciphermapsaplaintextalphabettoaciphertextalphabet,sothateachletteroftheplaintextalphabetmapstoasingleuniqueletteroftheciphertextalphabet.
2.10 ThePlayfairalgorithmisbasedontheuseofa55matrixoflettersconstructedusingakeyword.Plaintextisencryptedtwolettersatatimeusingthismatrix.
2.11 Apolyalphabeticsubstitutioncipherusesaseparatemonoalphabeticsubstitutioncipherforeachsuccessiveletterofplaintext,dependingonakey.
2.12 1.Thereisthepracticalproblemofmakinglargequantitiesofrandomkeys.Anyheavilyusedsystemmightrequiremillionsofrandomcharactersonaregularbasis.Supplyingtrulyrandomcharactersinthisvolumeisasignificanttask.
2.Evenmoredauntingistheproblemofkeydistributionandprotection.Foreverymessagetobesent,akeyofequallengthisneededbybothsenderandreceiver.Thus,amammothkeydistributionproblemexists.
2.13 Atranspositioncipherinvolvesapermutationoftheplaintextletters.
2.14 Steganographyinvolvesconcealingtheexistenceofamessage.
AnswerstoProblems
2.1 a. No.Achangeinthevalueofbshiftstherelationshipbetweenplaintextlettersandciphertextletterstotheleftorrightuniformly,sothatifthemappingisone-to-oneitremainsone-to-one.
b. 2,4,6,8,10,12,13,14,16,18,20,22,24.Anyvalueofalargerthan25isequivalenttoamod26.
c. Thevaluesofaand26musthavenocommonpositiveintegerfactorotherthan1.Thisisequivalenttosayingthataand26arerelativelyprime,orthatthegreatestcommondivisorofaand26is1.Toseethis,firstnotethatE(a,p)=E(a,q)(0≤p≤q<26)ifandonlyifa(p–q)isdivisibleby26.1.Supposethataand26arerelativelyprime.Then,a(p–q)isnotdivisibleby26,becausethereisnowaytoreducethefractiona/26and(p–q)islessthan26.2.Supposethataand26haveacommonfactork>1.ThenE(a,p)=E(a,q),ifq=p+m/k≠p.
2.2 Thereare12allowablevaluesofa(1,3,5,7,9,11,15,17,19,21,23,25).Thereare26allowablevaluesofb,from0through25).ThusthetotalnumberofdistinctaffineCaesarciphersis1226=312.
2.3 Assumethatthemostfrequentplaintextletteriseandthesecondmostfrequentletterist.Notethatthenumericalvaluesaree=4;B=1;t=19;U=20.Thenwehavethefollowingequations:
1=(4a+b)mod26
20=(19a+b)mod26
Thus,19=15amod26.Bytrialanderror,wesolve:a=3.
Then1=(12+b)mod26.Byobservation,b=15.
AgoodglassintheBishop'shostelintheDevil'sseat—twenty-onedegreesandthirteenminutes—northeastandbynorth—mainbranchseventhlimbeastside—shootfromthelefteyeofthedeath'shead—abeelinefromthetreethroughtheshotfiftyfeetout.(fromTheGoldBug,byEdgarAllanPoe)
a. ThefirstlettertcorrespondstoA,thesecondletterhcorrespondstoB,eisC,sisD,andsoon.Secondandsubsequentoccurrencesofaletterinthekeysentenceareignored.Theresult
ciphertext:SIDKHKDMAFHCRKIABIESHIMCKDLFEAILA
plaintext:basilisktoleviathanblakeiscontact
b. Itisamonalphabeticcipherandsoeasilybreakable.
c. Thelastsentencemaynotcontainallthelettersofthealphabet.Ifthefirstsentenceisused,thesecondandsubsequentsentencesmayalsobeuseduntilall26lettersareencountered.
Thecipherreferstothewordsinthepageofabook.Thefirstentry,534,referstopage534.Thesecondentry,C2,referstocolumntwo.Theremainingnumbersarewordsinthatcolumn.ThenamesDOUGLASandBIRLSTONEaresimplywordsthatdonotappearonthatpage.Elementary!(fromTheValleyofFear,bySirArthurConanDoyle)
2.7 a.
2
8
10
7
9
6
3
1
4
5
C
R
Y
P
T
O
G
A
H
I
B
E
A
T
T
H
E
T
H
I
R
D
P
I
L
L
A
R
F
R
O
M
T
H
E
L
E
F
T
O
U
T
S
I
D
E
T
H
E
L
Y
C
E
U
M
T
H
E
A
T
R
E
T
O
N
I
G
H
T
A
T
S
E
V
E
N
I
F
Y
O
U
A
R
E
D
I
S
T
R
U
S
T
F
U
L
B
R
I
N
G
T
W
O
F
R
I
E
N
D
S
4
2
8
10
5
6
3
7
1
9
N
E
T
W
O
R
K
S
C
U
T
R
F
H
E
H
F
T
I
N
B
R
O
U
Y
R
T
U
S
T
E
A
E
T
H
G
I
S
R
E
H
F
T
E
A
T
Y
R
N
D
I
R
O
L
T
A
O
U
G
S
H
L
L
E
T
I
N
I
B
I
T
I
H
I
U
O
V
E
U
F
E
D
M
T
C
E
S
A
T
W
T
L
E
D
M
N
E
D
L
R
A
P
T
S
E
T
E
R
F
O
ISRNGBUTLFRRAFRLIDLPFTIYONVSEETBEHIHTETA
EYHATTUCMEHRGTAIOENTTUSRUIEADRFOETOLHMET
NTEDSIFWROHUTELEITDS
b. Thetwomatricesareusedinreverseorder.First,theciphertextislaidoutincolumnsinthesecondmatrix,takingintoaccounttheorderdictatedbythesecondmemoryword.Then,thecontentsofthesecondmatrixarereadlefttoright,toptobottomandlaidoutincolumnsinthefirstmatrix,takingintoaccounttheorderdictatedbythefirstmemoryword.Theplaintextisthenreadlefttoright,toptobottom.
c. Althoughthisisaweakmethod,itmayhaveusewithtime-sensitiveinformationandanadversarywithoutimmediateaccesstogoodcryptanalysis(e.g.,tacticaluse).Plusitdoesn'trequireanythingmorethanpaperandpencil,andcanbeeasilyremembered.
2.8 SPUTNIK
2.9 PTBOATONEOWENINELOSTINACTIONINBLACKETTSTRAITTWOMILESSWMERESUCOVEXCREWOFTWELVEXREQUESTANYINFORMATION
2.10 a.
L
A
R
G
E
S
T
B
C
D
F
H
I/J
K
M
N
O
P
Q
U
V
W
X
Y
Z
b.
O
C
U
R
E
N
A
B
D
F
G
H
I/J
K
L
M
P
Q
S
T
V
W
X
Y
Z
2.11 a. UZTBDLGZPNNWLGTGTUEROVLDBDUHFPERHWQSRZ
b. UZTBDLGZPNNWLGTGTUEROVLDBDUHFPERHWQSRZ
c. Acyclicrotationofrowsand/orcolumnsleadstoequivalentsubstitutions.Inthiscase,thematrixforpartaofthisproblemisobtainedfromthematrixofProblem,byrotatingthecolumnsbyonestepandtherowsbythreesteps.
2.12 a. 25!284
b. Givenany5x5configuration,anyofthefourrowrotationsisequivalent,foratotaloffiveequivalentconfigurations.Foreachofthesefiveconfigurations,anyofthefourcolumnrotationsisequivalent.Soeachconfigurationinfactrepresents25equivalentconfigurations.Thus,thetotalnumberofuniquekeysis25!/25=24!
2.13 AmixedCaesarcipher.Theamountofshiftisdeterminedbythekeyword,whichdeterminestheplacementoflettersinthematrix.
2.14 a. Difficultiesarethingsthatshowwhatmenare.
b. Irrationallyheldtruthsmaybemoreharmfulthanreasonederrors.
2.15 a. Weneedanevennumberofletters,soappenda"q"totheendofthemessage.Thenconvertthelettersintothecorrespondingalphabeticpositions:
M
e
e
t
m
e
a
t
t
h
e
u
s
u
a
l
13
5
5
20
13
5
1
20
20
8
5
21
19
21
1
12
P
l
a
c
e
a
t
t
e
n
r
a
t
h
e
r
16
12
1
3
5
1
20
20
5
14
18
1
20
8
5
18
T
h
a
n
e
i
g
h
t
o
c
l
o
c
k
q
20
8
1
14
5
9
7
8
20
15
3
12
15
3
11
17
Thecalculationsproceedtwolettersatatime.Thefirstpair:
Thefirsttwociphertextcharactersarealphabeticpositions7and22,whichcorrespondtoGV.Thecompleteciphertext:
GVUIGVKODZYPUHEKJHUZWFZFWSJSDZMUDZMYCJQMFWWUQRKR
b. Wefirstperformamatrixinversion.Notethatthedeterminateoftheencryptionmatrixis(97)–(45)=43.Usingthematrixinversionformulafromthebook:
Hereweusedthefactthat(43)–1=23inZ26.Oncetheinversematrixhasbeendetermined,decryptioncanproceed.Source:[LEWA00].
ConsiderthematrixKwithelementskijtoconsistofthesetofcolumnvectorsKj,where:
and
Theciphertextofthefollowingchosenplaintextn-gramsrevealsthecolumnsofK:
(B,A,A,…,A,A)K1
(A,B,A,…,A,A)K2
(A,A,A,…,A,B)Kn
2.17 a. 7134
b. 7134
c. 134
d. 10134
e. 24132
f. 24 (132–1)13
g. 37648
h. 23530
i. 157248
2.18 key: legleglegle
plaintext: explanation
ciphertext: PBVWETLXOZR
2.19 a.
s
e
n
d
m
o
r
e
m
o
n
e
y
18
4
13
3
12
14
17
4
12
14
13
4
24
9
0
1
7
23
15
21
14
11
11
2
8
9
1
4
14
10
9
3
12
18
23
25
15
12
7
B
E
C
K
J
D
M
S
X
Z
P
M
H
b.
c
a
s
h
n
o
t
n
e
e
d
e
d
2
0
18
7
13
14
19
13
4
4
3
4
3
25
4
22
3
22
15
19
5
19
21
12
8
4
1
4
14
10
9
3
12
18
23
25
15
12
7
B
E
C
K
J
D
M
S
X
Z
P
M
H
yourpackagereadyFriday21stroomthreePleasedestroythisimmediately.
2.21 a. Laythemessageoutinamatrix8lettersacross.Eachintegerinthekeytellsyouwhichlettertochooseinthecorrespondingrow.Result:
Hesittethbetweenthecherubims.Theislesmaybegladthereof.Astheriversinthesouth.
b. Quitesecure.Ineachrowthereisoneofeightpossibilities.Soiftheciphertextis8nlettersinlength,thenthenumberofpossibleplaintextsis8n.
c. Notverysecure.LordPeterfigureditout.(fromTheNineTailors)
Chapter3
BlockCiphersandtheDataEncryptionStandard
AnswerstoQuestions
3.1 MostsymmetricblockencryptionalgorithmsincurrentusearebasedontheFeistelblockcipherstructure.Therefore,astudyoftheFeistelstructurerevealstheprinciplesbehindthesemorerecentciphers.
3.2 Astreamcipherisonethatencryptsadigitaldatastreamonebitoronebyteatatime.Ablockcipherisoneinwhichablockofplaintextistreatedasawholeandusedtoproduceaciphertextblockofequallength.
3.3 Ifasmallblocksize,suchasn=4,isused,thenthesystemisequivalenttoaclassicalsubstitutioncipher.Forsmalln,suchsystemsarevulnerabletoastatisticalanalysisoftheplaintext.Foralargeblocksize,thesizeofthekey,whichisontheorderofn2n,makesthesystemimpractical.
3.4 Inaproductcipher,twoormorebasicciphersareperformedinsequenceinsuchawaythatthefinalresultorproductiscryptographicallystrongerthananyofthecomponentciphers.
3.5 Indiffusion,thestatisticalstructureoftheplaintextisdissipatedintolong-rangestatisticsoftheciphertext.Thisisachievedbyhavingeachplaintextdigitaffectthevalueofmanyciphertextdigits,whichisequivalenttosayingthateachciphertextdigitisaffectedbymanyplaintextdigits.Confusionseekstomaketherelationshipbetweenthestatisticsoftheciphertextandthevalueoftheencryptionkeyascomplexaspossible,againtothwartattemptstodiscoverthekey.Thus,eveniftheattackercangetsomehandleonthestatisticsoftheciphertext,thewayinwhichthekeywasusedtoproducethatciphertextissocomplexastomakeitdifficulttodeducethekey.Thisisachievedbytheuseofacomplexsubstitutionalgorithm.
3.6 Blocksize:Largerblocksizesmeangreatersecurity(allotherthingsbeingequal)butreducedencryption/decryptionspeed.Keysize:Largerkeysizemeansgreatersecuritybutmaydecreaseencryption/decryptionspeed.Numberofrounds:TheessenceoftheFeistelcipheristhatasingleroundoffersinadequatesecuritybutthatmultipleroundsofferincreasingsecurity.Subkeygenerationalgorithm:Greatercomplexityinthisalgorithmshouldleadtogreaterdifficultyofcryptanalysis.Roundfunction:Again,greatercomplexitygenerallymeansgreaterresistancetocryptanalysis.Fastsoftwareencryption/decryption:Inmanycases,encryptionisembeddedinapplicationsorutilityfunctionsinsuchawayastoprecludeahardwareimplementation.Accordingly,thespeedofexecutionofthealgorithmbecomesaconcern.Easeofanalysis:Althoughwewouldliketomakeouralgorithmasdifficultaspossibletocryptanalyze,thereisgreatbenefitinmakingthealgorithmeasytoanalyze.Thatis,ifthealgorithmcanbeconciselyandclearlyexplained,itiseasiertoanalyzethatalgorithmforcryptanalyticvulnerabilitiesandthereforedevelopahigherlevelofassuranceastoitsstrength.
3.7 TheS-boxisasubstitutionfunctionthatintroducesnonlinearityandaddstothecomplexityofthetransformation.
3.8 Theavalancheeffectisapropertyofanyencryptionalgorithmsuchthatasmallchangeineithertheplaintextorthekeyproducesasignificantchangeintheciphertext.
3.9 DifferentialcryptanalysisisatechniqueinwhichchosenplaintextswithparticularXORdifferencepatternsareencrypted.Thedifferencepatternsoftheresultingciphertextprovideinformationthatcanbeusedtodeterminetheencryptionkey.Linearcryptanalysisisbasedonfindinglinearapproximationstodescribethetransformationsperformedinablockcipher.
AnswerstoProblems
3.1 a. Forann-bitblocksizeare2npossibledifferentplaintextblocksand2npossibledifferentciphertextblocks.Forboththeplaintextandciphertext,ifwetreattheblockasanunsignedinteger,thevaluesareintherange0through2n–1.Foramappingtobereversible,eachplaintextblockmustmapintoauniqueciphertextblock.Thus,toenumerateallpossiblereversiblemappings,theblockwithvalue0canmapintoanyoneof2npossibleciphertextblocks.Foranygivenmappingoftheblockwithvalue0,theblockwithvalue1canmapintoanyoneof2n–1possibleciphertextblocks,andsoon.Thus,thetotalnumberofreversiblemappingsis(2n)!.
b. Intheory,thekeylengthcouldbelog2(2n)!bits.Forexample,assigneachmappinganumber,from1through(2n)!andmaintainatablethatshowsthemappingforeachsuchnumber.Then,thekeywouldonlyrequirelog2(2n)!bits,butwewouldalsorequirethishugetable.Amorestraightforwardwaytodefinethekeyistohavethekeyconsistoftheciphertextvalueforeachplaintextblock,listedinsequenceforplaintextblocks0through2n–1.ThisiswhatissuggestedbyTable3.1.Inthiscasethekeysizeisn2nandthehugetableisnotrequired.
3.2 Becauseofthekeyschedule,theroundfunctionsusedinrounds9through16aremirrorimagesoftheroundfunctionsusedinrounds1through8.Fromthisfactweseethatencryptionanddecryptionareidentical.Wearegivenaciphertextc.Letm'=c.Asktheencryptionoracletoencryptm'.Theciphertextreturnedbytheoraclewillbethedecryptionofc.
a. WeneedonlydeterminetheprobabilitythatfortheremainingN–tplaintextsPi,wehaveE[K,Pi]≠E[K',Pi].ButE[K,Pi]=E[K',Pi]foralltheremainingPiwithprobability1–1/(N–t)!.
b. WithoutlossofgeneralitywemayassumetheE[K,Pi]=PisinceEK(?)istakenoverallpermutations.ItthenfollowsthatweseektheprobabilitythatapermutationonN–tobjectshasexactlyt'fixedpoints,whichwouldbetheadditionalt'pointsofagreementbetweenE(K,?)andE(K',?).ButapermutationonN–tobjectswitht'fixedpointsisequaltothenumberofwayst'outofN–tobjectscanbefixed,whiletheremainingN–t–t'arenotfixed.ThenusingProblem3.4wehavethat
Pr(t'additionalfixedpoints) = Pr(nofixedpointsinN–t–t'objects)
=
Weseethatthisreducestothesolutiontopart(a)whent'=N–t.
Letbethesetofpermutationson[0,1,...,2n–1],whichisreferredtoasthesymmetricgroupon2nobjects,andletN=2n.For0≤i≤N,letAibeallmappingsforwhichπ(i)=i.Itfollowsthat|Ai|=(N–1)!and=(N–k)!.Theinclusion-exclusionprinciplestatesthat
Pr(nofixedpointsinπ) =
=
= 1–1+1/2!–1/3!+...+(–1)N1/N!
= e–1+
Thensincee–10.368,wefindthatforevensmallvaluesofN,approximately37%ofpermutationscontainnofixedpoints.
3.6 MainkeyK=111…111(56bits)
RoundkeysK1=K2=…=K16=1111..111(48bits)
CiphertextC=1111…111(64bits)
Inputtothefirstroundofdecryption=
LD0RD0=RE16LE16=IP(C)=1111...111(64bits)
LD0=RD0=1111...111(32bits)
Outputofthefirstroundofdecryption=LD1RD1
LD1=RD0=1111…111(32bits)
Thus,thebitsno.1and16oftheoutputareequalto‘1’.
RD1=LD0F(RD0,K16)
Wearelookingforbitsno.1and16ofRD1(33and48oftheentireoutput).
BasedontheanalysisofthepermutationP,bit1ofF(RD0,K16)comesfromthefourthoutputoftheS-boxS4,andbit16ofF(RD0,K16)comesfromthesecondoutputoftheS-boxS3.ThesebitsareXOR-edwith1’sfromthecorrespondingpositionsofLD0.
InsideofthefunctionF,
E(RD0)≈K16=0000…000(48bits),
andthusinputstoalleightS-boxesareequalto“000000”.
OutputfromtheS-boxS4=“0111”,andthusthefourthoutputisequalto‘1’,
OutputfromtheS-boxS3=“1010”,andthusthesecondoutputisequalto‘0’.
Fromhere,aftertheXOR,thebitno.33ofthefirstroundoutputisequalto‘0’,andthebitno.48isequalto‘1’.
3.7 InthesolutiongivenbelowthefollowinggeneralpropertiesoftheXORfunctionareused:
A1=A'
(AB)'=A'B=AB'
A'B'=AB
WhereA'=thebitwisecomplementofA.
a. F(Rn,Kn+1)=1
Wehave
Ln+1=Rn;Rn+1=LnF(Rn,Kn+1)=Ln1=Ln'
Thus
Ln+2=Rn+1=Ln';Rn+2=Ln+1=Rn'
i.e.,aftereachtworoundsweobtainthebitcomplementoftheoriginalinput,andeveryfourroundsweobtainbacktheoriginalinput:
Ln+4=Ln+2'=Ln;Rn+2=Rn+2'=Rn
Therefore,
L16=L0;R16=R0
AninputtotheinverseinitialpermutationisR16L16.
Therefore,thetransformationcomputedbythemodifiedDEScanberepresentedasfollows:
C=IP–1(SWAP(IP(M))),whereSWAPisapermutationexchangingthepositionoftwohalvesoftheinput:SWAP(A,B)=(B,A).
Thisfunctionislinear(andthusalsoaffine).Actually,thisisapermutation,theproductofthreepermutationsIP,SWAP,andIP–1.Thispermutationishoweverdifferentfromtheidentitypermutation.
b. F(Rn,Kn+1)=Rn'
Wehave
Ln+1=Rn;Rn+1=LnF(Rn,Kn+1)=LnRn'
Ln+2=Rn+1=LnRn'
Rn+2=Ln+1F(Rn+1,Kn+2)=Rn≈(LnRn')'=RnLnRn''=Ln
Ln+3=Rn+2=Ln
Rn+3=Ln+2F(Rn+2,Kn+3)=(Ln≈Rn')Ln'=Rn'1=Rn
i.e.,aftereachthreeroundswecomebacktotheoriginalinput.
L15=L0;R15=R0
and
L16=R0(1)
R16=L0R0'(2)
AninputtotheinverseinitialpermutationisR16L16.
Afunctiondescribedby(1)and(2)isaffine,asbitwisecomplementisaffine,andtheothertransformationsarelinear.
ThetransformationcomputedbythemodifiedDEScanberepresentedasfollows:
C=IP–1(FUN2(IP(M))),whereFUN2(A,B)=(AB',B).
Thisfunctionisaffineasaproductofthreeaffinefunctions.
Inallcasesdecryptionlooksexactlythesameasencryption.
3.8 a. First,passthe64-bitinputthroughPC-1(Table)toproducea56-bitresult.Thenperformaleftcircularshiftseparatelyonthetwo28-bithalves.Finally,passthe56-bitresultthroughPC-2(Table3.4b)toproducethe48-bitK1.:
inbinarynotation: 000010110000001001100111
100110110100100110100101
inhexadecimalnotation: 0B02679B49A5
b. L0,R0arederivedbypassingthe64-plaintextthroughIP(Table):
L0=11001100000000001100110011111111
R0=11110000101010101111000010101010
c. TheEtable(Table)expandsR0to48bits:
E(R0)=01110100001010101010101011110100001010101010101
d. A=011100010001011100110010111000010101110011110000
e. (1110)=(14)= 0(base10) = 0000(base2)
(1000)=(8)= 12(base10) = 1100(base2)
(1110)=(14)= 2(base10) = 0010(base2)
(1001)=(9)= 1(base10) = 0001(base2)
(1100)=(12)= 6(base10) = 0110(base2)
(1010)=(10)= 13(base10) = 1101(base2)
(1001)=(9)= 5(base10) = 0101(base2)
(1000)=(8)= 0(base10) = 0000(base2)
f. B=00001100001000010110110101010000
g. UsingTable3.2d,P(B)=10010010000111000010000010011100
h. R1=01011110000111001110110001100011
i. L1=R0.TheciphertextistheconcatenationofL1andR1.Source:[MEYE82]
ThereasoningfortheFeistelcipher,asshowninFigure3.6appliesinthecaseofDES.WeonlyhavetoshowtheeffectoftheIPandIP–1functions.Forencryption,theinputtothefinalIP–1isRE16||LE16.Theoutputofthatstageistheciphertext.Ondecryption,thefirststepistotaketheciphertextandpassitthroughIP.BecauseIPistheinverseofIP–1,theresultofthisoperationisjustRE16||LE16,whichisequivalenttoLD0||RD0.Then,wefollowthesamereasoningaswiththeFeistelciphertoreachapointwhereLE0=RD16andRE0=LD16.DecryptioniscompletedbypassingLD0||RD0throughIP–1.Again,becauseIPistheinverseofIP–1,passingtheplaintextthroughIPasthefirststepofencryptionyieldsLD0||RD0,thusshowingthatdecryptionistheinverseofencryption.
a. Letusworkthisfromtheinsideout.
T16(L15||R15)=L16||R16
T17(L16||R16)=R16||L16
IP[IP–1(R16||L16)]=R16||L16
TD1(R16||L16)=R15||L15
b. T16(L15||R15)=L16||R16
IP[IP–1(L16||R16)]=L16||R16
TD1(R16||L16)=R16||L16f(R16,K16)
≠L15||R15
PC-1isessentiallythesameasIPwitheveryeighthbiteliminated.Thiswouldenableasimilartypeofimplementation.Beyondthat,theredoesnotappeartobeanyparticularcryptographicsignificance.
3.12
Roundnumber
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Bitsrotated
0
1
2
2
2
2
2
2
1
2
2
2
2
2
2
1
a. Theequalityinthehintcanbeshownbylistingall1-bitpossibilities:
A
B
AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年超小型鈕子開關項目可行性研究報告
- 2025年離子噴霧機項目可行性研究報告
- 2025年玻璃圓形切割臺項目可行性研究報告
- 2025年汽車不解體探傷儀項目可行性研究報告
- 2025年普通型鋼珠滑軌項目可行性研究報告
- 2025年承接式管道密封圈項目可行性研究報告
- 2025至2031年中國啟動機油泵試驗臺行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國保溫冰袋行業(yè)投資前景及策略咨詢研究報告
- 2025年亞麻粘項目可行性研究報告
- 2025年PET耐高溫瓶吹瓶機項目可行性研究報告
- 2023年菏澤醫(yī)學專科學校單招綜合素質(zhì)模擬試題及答案解析
- 常見食物的嘌呤含量表匯總
- 人教版數(shù)學八年級下冊同步練習(含答案)
- SB/T 10752-2012馬鈴薯雪花全粉
- 2023年湖南高速鐵路職業(yè)技術學院高職單招(英語)試題庫含答案解析
- 濕型砂中煤粉作用及檢測全解析
- 積累運用表示動作的詞語課件
- 機動車登記證書英文證書模板
- 第8課《山山水水》教學設計(新人教版小學美術六年級上冊)
- T∕ZSQX 008-2020 建設工程全過程質(zhì)量行為導則
- 質(zhì)量管理體系基礎知識培訓-2016
評論
0/150
提交評論