2023-2024學年安徽省亳州一中學南學校國際部數(shù)學九年級第一學期期末考試模擬試題含解析_第1頁
2023-2024學年安徽省亳州一中學南學校國際部數(shù)學九年級第一學期期末考試模擬試題含解析_第2頁
2023-2024學年安徽省亳州一中學南學校國際部數(shù)學九年級第一學期期末考試模擬試題含解析_第3頁
2023-2024學年安徽省亳州一中學南學校國際部數(shù)學九年級第一學期期末考試模擬試題含解析_第4頁
2023-2024學年安徽省亳州一中學南學校國際部數(shù)學九年級第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年安徽省亳州一中學南學校國際部數(shù)學九年級第一學期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,四邊形ABCD內(nèi)接于,它的一個外角,分別連接AC,BD,若,則的度數(shù)為()A. B. C. D.2.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為()A. B. C.3 D.53.拋物線y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正確的有()A.1個 B.2個 C.3個 D.4個4.已知關(guān)于x的分式方程無解,關(guān)于y的不等式組的整數(shù)解之和恰好為10,則符合條件的所有m的和為()A. B. C. D.5.用配方法解一元二次方程,配方后的方程是()A. B. C. D.6.拋物線向右平移4個單位長度后與拋物線重合,若(-1,3)在拋物線上,則下列點中,一定在拋物線上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)7.如圖,線段AB是⊙O的直徑,弦,,則等于().A. B. C. D.8.如圖,在同一平面直角坐標系中,一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y2=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣2),B(2,m)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<29.sin30°等于()A. B. C. D.10.一元二次方程的兩個根為,則的值是()A.10 B.9 C.8 D.7二、填空題(每小題3分,共24分)11.圓心角為,半徑為2的扇形的弧長是_______.12.如圖,⊙O過正方形網(wǎng)格中的格點A,B,C,D,點E也為格點,連結(jié)BE交⊙O于點F,P為上的任一點,則tanP=_____.13.如圖是一個圓環(huán)形黃花梨木擺件的殘片,為求其外圓半徑,小林在外圓上任取一點A,然后過點A作AB與殘片的內(nèi)圓相切于點D,作CD⊥AB交外圓于點C,測得CD=15cm,AB=60cm,則這個擺件的外圓半徑是_____cm.14.將拋物線y=x2+x向下平移2個單位,所得拋物線的表達式是.15.如圖,四邊形ABCD是矩形,,,以點A為圓心,AB長為半徑畫弧,交CD于點E,交AD的延長線于點F,則圖中陰影部分的面積是________.16.已知正方形ABCD的對角線長為8cm,則正方形ABCD的面積為_____cm1.17.如圖,在中,,,點在邊上,,.點是線段上一動點,當半徑為的與的一邊相切時,的長為____________.18.若是方程的一個根,則式子的值為__________.三、解答題(共66分)19.(10分)如圖,是的直徑,是上半圓的弦,過點作的切線交的延長線于點,過點作切線的垂線,垂足為,且與交于點,設,的度數(shù)分別是.用含的代數(shù)式表示,并直接寫出的取值范圍;連接與交于點,當點是的中點時,求的值.20.(6分)某商場經(jīng)營一種新上市的文具,進價為元/件,試營銷階段發(fā)現(xiàn):當銷售單價為元/件時,每天的銷售量是件;銷售單價每上漲一元,每天的銷售量就減少件,(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;(2)求銷售單價為多少元時,該文具每天的銷售利潤最大?21.(6分)如圖,在平面直角坐標系xOy中,直線和拋物線W交于A,B兩點,其中點A是拋物線W的頂點.當點A在直線上運動時,拋物線W隨點A作平移運動.在拋物線平移的過程中,線段AB的長度保持不變.應用上面的結(jié)論,解決下列問題:在平面直角坐標系xOy中,已知直線.點A是直線上的一個動點,且點A的橫坐標為.以A為頂點的拋物線與直線的另一個交點為點B.(1)當時,求拋物線的解析式和AB的長;(2)當點B到直線OA的距離達到最大時,直接寫出此時點A的坐標;(3)過點A作垂直于軸的直線交直線于點C.以C為頂點的拋物線與直線的另一個交點為點D.①當AC⊥BD時,求的值;②若以A,B,C,D為頂點構(gòu)成的圖形是凸四邊形(各個內(nèi)角度數(shù)都小于180°)時,直接寫出滿足條件的的取值范圍.22.(8分)已知:如圖,在△ABC中,點D,E分別在邊AB,BC上,BA?BD=BC?BE(1)求證:△BDE∽△BCA;(2)如果AE=AC,求證:AC2=AD?AB.23.(8分)綜合與探究:已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(點B在點A的左側(cè)),與y軸交于點C.(1)求點A,B,C的坐標;(2)求證:△ABC為直角三角形;(3)如圖,動點E,F(xiàn)同時從點A出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒個單位長度的速度沿射線AC方向運動.當點F停止運動時,點E隨之停止運動.設運動時間為t秒,連結(jié)EF,將△AEF沿EF翻折,使點A落在點D處,得到△DEF.當點F在AC上時,是否存在某一時刻t,使得△DCO≌△BCO?(點D不與點B重合)若存在,求出t的值;若不存在,請說明理由.24.(8分)如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度數(shù);(2)若AD=,求DB的長.25.(10分)如圖,在平面直角坐標系中,的三個頂點坐標分別為,,(1)畫出關(guān)于軸對稱的,并寫出點的坐標;(2)畫出繞原點順時針方向旋轉(zhuǎn)后得到的,并寫出點的坐標;(3)將平移得到,使點的對應點是,點的對應點時,點的對應點是,在坐標系中畫出,并寫出點,的坐標.26.(10分)某校一課外活動小組為了了解學生最喜歡的球類運動況,隨機抽查了本校九年級的200名學生,調(diào)查的結(jié)果如圖所示,請根據(jù)該扇形統(tǒng)計圖解答以下問題:(1)圖中的值是________;(2)被查的200名生中最喜歡球運動的學生有________人;(3)若由3名最喜歡籃球運動的學生(記為),1名最喜歡乒乓球運動的學生(記為),1名最喜歡足球運動的學生(記為)組隊外出參加一次聯(lián)誼活動.欲從中選出2人擔任組長(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運動的學生的概率.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】先根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠ADC=∠EBC=65°,再根據(jù)AC=AD得出∠ACD=∠ADC=65°,故可根據(jù)三角形內(nèi)角和定理求出∠CAD=50°,再由圓周角定理得出∠DBC=∠CAD=50°.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故選:A.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),以及圓周角定理的推論,熟知圓內(nèi)接四邊形的對角互補是解答此題的關(guān)鍵.也考查了等腰三角形的性質(zhì)以及三角形內(nèi)角和定理.2、B【分析】由已知,可得菱形邊長為5,設出點D坐標,即可用勾股定理構(gòu)造方程,進而求出k值.【詳解】過點D做DF⊥BC于F,由已知,BC=5,∵四邊形ABCD是菱形,∴DC=5,∵BE=3DE,∴設DE=x,則BE=3x,∴DF=3x,BF=x,F(xiàn)C=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,F(xiàn)D=3,設OB=a,則點D坐標為(1,a+3),點C坐標為(5,a),∵點D、C在雙曲線上,∴1×(a+3)=5a,∴a=,∴點C坐標為(5,)∴k=.故選B.【點睛】本題是代數(shù)幾何綜合題,考查了數(shù)形結(jié)合思想和反比例函數(shù)k值性質(zhì).解題關(guān)鍵是通過勾股定理構(gòu)造方程.3、D【分析】由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線與x軸有兩不同的交點,∴△=b2﹣4ac>1.故①正確;②∵拋物線y=ax2+bx+c的圖象經(jīng)過點(1,2),∴代入得a+b+c=2.故②正確;③∵根據(jù)圖示知,拋物線開口方向向上,∴a>1.又∵對稱軸x=﹣<1,∴b>1.∵拋物線與y軸交與負半軸,∴c<1,∴abc<1.故③正確;④∵當x=﹣1時,函數(shù)對應的點在x軸下方,則a﹣b+c<1,故④正確;綜上所述,正確的結(jié)論是:①②③④,共有4個.故選:D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系.會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.4、C【分析】分式方程去分母轉(zhuǎn)化為整式方程,表示出整式方程的解,由分式方程無解確定出m的值,不等式組整理后表示出解集,由整數(shù)解之和恰好為10確定出m的范圍,進而求出符合條件的所有m的和即可.【詳解】解:,分式方程去分母得:mx+2x-12=3x-9,移項合并得:(m-1)x=3,當m-1=0,即m=1時,方程無解;當m-1≠0,即m≠1時,解得:x=,由分式方程無解,得到:或,解得:m=2或m=,不等式組整理得:,即0≤x<,由整數(shù)解之和恰好為10,得到整數(shù)解為0,1,2,3,4,可得4<≤5,即,則符合題意m的值為1和,之和為.故選:C.【點睛】此題考查了分式方程的解,以及一元一次不等式組的整數(shù)解,熟練掌握運算法則是解本題的關(guān)鍵.5、C【分析】先移項變形為,再將兩邊同時加4,即可把左邊配成完全平方式,進而得到答案.【詳解】∵∴∴∴故選C.【點睛】本題考查配方法解一元二次方程,熟練掌握配方法的解法步驟是解題的關(guān)鍵.6、A【分析】利用點的平移進行解答即可.【詳解】解:∵拋物線向右平移4個單位長度后與拋物線重合∴將(-1,3)向右平移4個單位長度的點在拋物線上∴(3,3)在拋物線上故選:A【點睛】本題考查了點的平移與函數(shù)平移規(guī)律,掌握點的規(guī)律是解題的關(guān)鍵.7、C【分析】先根據(jù)垂徑定理得到,再根據(jù)圓周角定理得∠BOD=2∠CAB=40°,然后利用鄰補角的定義計算∠AOD的度數(shù).【詳解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案為C.【點睛】本題考查圓中的角度計算,熟練掌握垂徑定理和圓周角定理是關(guān)鍵.8、C【分析】一次函數(shù)y1=kx+b落在與反比例函數(shù)y1=圖像上方的部分對應的自變量的取值范圍即為不等式的解集.【詳解】解:∵一次函數(shù)y1=kx+b(k、b是常數(shù),且k≠0)與反比例函數(shù)y1=(c是常數(shù),且c≠0)的圖象相交于A(﹣3,﹣1),B(1,m)兩點,∴不等式y(tǒng)1>y1的解集是﹣3<x<0或x>1.故答案為C.【點睛】本題考查了一次函數(shù)、反比例函數(shù)圖像與不等式的關(guān)系,從函數(shù)圖像確定不等式的解集是解答本題的關(guān)鍵.9、B【解析】分析:根據(jù)特殊角的三角函數(shù)值來解答本題.詳解:sin30°=.故選B.點睛:本題考查了特殊角的三角函數(shù)值,特殊角三角函數(shù)值的計算在中考中經(jīng)常出現(xiàn),題型以選擇題、填空題為主.10、D【分析】利用方程根的定義可求得,再利用根與系數(shù)的關(guān)系即可求解.【詳解】為一元二次方程的根,,.根據(jù)題意得,,.故選:D.【點睛】本題主要考查了一元二次方程的解,根與系數(shù)的關(guān)系以及求代數(shù)式的值,熟練掌握根與系數(shù)的關(guān)系,是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】利用弧長公式進行計算.【詳解】解:故答案為:【點睛】本題考查弧長的計算,掌握公式正確計算是本題的解題關(guān)鍵.12、1【分析】根據(jù)題意,連接DF,得出∠P=∠BDF,由圓的性質(zhì),進而證明出∠BDF=∠BED,利用正方形網(wǎng)格圖形,結(jié)合銳角三角函數(shù)值求出tan∠P即可.【詳解】解:連接DF,如圖,則∠P=∠BDF,∵BD為直徑,∴∠BFD=90°,∵∠DBF+∠BDF=90°,∠EBD+∠BED=90°,∴∠BDF=∠BED,∴∠P=∠BED,∵tan∠BED==1,∴tan∠P=1.故答案為1.【點睛】本題考查了圓的基本性質(zhì),圓周角定理,同角的余角相等,銳角三角函數(shù)值應用,掌握圓的基本性質(zhì)和相關(guān)知識點是解題的關(guān)鍵.13、37.1【分析】根據(jù)垂徑定理求得AD=30cm,然后根據(jù)勾股定理得出方程,解方程即可求得半徑.【詳解】如圖,設點O為外圓的圓心,連接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴設半徑為rcm,則OD=(r﹣11)cm,根據(jù)題意得:r2=(r﹣11)2+302,解得:r=37.1,∴這個擺件的外圓半徑長為37.1cm,故答案為37.1.【點睛】本題考查了垂徑定理的應用以及勾股定理的應用,作出輔助線構(gòu)建直角三角形是解本題的關(guān)鍵.14、y=x1+x﹣1.【解析】根據(jù)平移變化的規(guī)律,左右平移只改變點的橫坐標,左減右加.上下平移只改變點的縱坐標,下減上加.因此,將拋物線y=x1+x向下平移1個單位,所得拋物線的表達式是y=x1+x﹣1.15、.【分析】根據(jù)題意可以求得和的度數(shù),然后根據(jù)圖形可知陰影部分的面積就是矩形的面積與矩形中間空白部分的面積之差再加上扇形EAF與的面積之差的和,本題得以解決.【詳解】解:連接AE,∵,,,∴,∴,∴,,∴,∴陰影部分的面積是:,故答案為.【點睛】本題考查扇形面積的計算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.16、31【分析】根據(jù)正方形的對角線相等且互相垂直,正方形是特殊的菱形,菱形的面積等于對角線乘積的一半進行求解即可.【詳解】解:∵四邊形ABCD為正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面積=×AC×BD=31cm1,故答案為:31.【點睛】本題考查了求解菱形的面積,屬于簡單題,熟悉求解菱形面積的特殊方法是解題關(guān)鍵.17、或或【分析】根據(jù)勾股定理得到AB、AD的值,再分3種情況根據(jù)相似三角形性質(zhì)來求AP的值.【詳解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB2=AC2+BC2AB=①當⊙P與BC相切時,設切點為E,連結(jié)PE,則PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②當⊙P與AC相切時,設切點為F,連結(jié)PF,則PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③當⊙P與BC相切時,設切點為G,連結(jié)PG,則PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案為:或或5【點睛】本題考查了利用相似三角形的性質(zhì)對應邊成比例來證明三角形邊的長.注意分清對應邊,不要錯位.18、1【分析】將a代入方程中得到,將其整體代入中,進而求解.【詳解】由題意知,,即,∴,故答案為:1.【點睛】本題考查了方程的根,求代數(shù)式的值,學會運用整體代入的思想是解題的關(guān)鍵.三、解答題(共66分)19、(1)β=90°-2α(0°<α<45°);(2)α=β=30°【分析】(1)首先證明,在中,根據(jù)兩銳角互余,可知;(2)連接OF交AC于O′,連接CF,只要證明四邊形AFCO是菱形,推出是等邊三角形即可解決問題.【詳解】解:(1)連接OC.∵DE是⊙O的切線,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)連接OF交AC于O′,連接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四邊形AFCO是平行四邊形,∵OA=OC,∴四邊形AFCO是菱形,∴AF=AO=OF,∴△AOF是等邊三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【點睛】本題考查了圓和三角形的問題,掌握圓的切線的性質(zhì)以及等邊三角形的性質(zhì)和證明是解題的關(guān)鍵.20、(1)w=-10x2+700x-10000;(2)35元【分析】(1)利用每件利潤×銷量=總利潤,進而得出w與x的函數(shù)關(guān)系式;

(2)利用配方法求出二次函數(shù)最值進而得出答案.【詳解】解:(1)由題意可得:w=(x-20)[250-10(x-25)]

=-10(x-20)(x-50)

=-10x2+700x-10000;

(2)∵w=-10x2+700x-10000=-10(x-35)2+2250,

∴當x=35時,w取到最大值2250,

即銷售單價為35元時,每天銷售利潤最大,最大利潤為2250元.【點睛】此題主要考查了二次函數(shù)的應用,根據(jù)銷量與售價之間的關(guān)系得出函數(shù)關(guān)系式是解題關(guān)鍵.21、(1);(2);(3)①;②的取值范圍是或.【分析】(1)根據(jù)t=3時,A的坐標可以求得是(3,-2),利用待定系數(shù)法即可求得拋物線的解析式,則B的坐標可以求得;

(2)△OAB的面積一定,當OA最小時,B到OA的距離即△OAB中OA邊上的高最大,此時OA⊥AB,據(jù)此即可求解;

(3)①方法一:設AC,BD交于點E,直線l1:y=x-2,與x軸、y軸交于點P和Q(如圖1).由點D在拋物線C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:設直線l1:y=x-2與x軸交于點P,過點A作y軸的平行線,過點B作x軸的平行線,交于點N.(如圖2),根據(jù)BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②設直線l1與l2交于點M.隨著點A從左向右運動,從點D與點M重合,到點B與點M重合的過程中,可得滿足條件的t的取值范圍.【詳解】解:(1)∵點A在直線l1:y=x-2上,且點A的橫坐標為3,

∴點A的坐標為(3,-2),

∴拋物線C1的解析式為y=-x2-2,

∵點B在直線l1:y=x-2上,

設點B的坐標為(x,x-2).

∵點B在拋物線C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵點A與點B不重合,

∴點B的坐標為(-1,-3),

∴由勾股定理得AB=.

(2)當OA⊥AB時,點B到直線OA的距離達到最大,則OA的解析式是y=-x,則

,解得:,

則點A的坐標為(1,-1).(3)①方法一:設,交于點,直線,與軸、軸交于點和(如圖1).則點和點的坐標分別為,.∴.∵.∵軸,∴軸.∴.∵,,∴.∵點在直線上,且點的橫坐標為,∴點的坐標為.∴點的坐標為.∵軸,∴點的縱坐標為.∵點在直線上,∴點的坐標為.∴拋物線的解析式為.∵,∴點的橫坐標為,∵點在直線上,∴點的坐標為.∵點在拋物線上,∴.解得或.∵當時,點與點重合,∴方法二:設直線l1:y=x-2與x軸交于點P,過點A作y軸的平行線,過點B作x軸的平行線,交于點N.(如圖2)

則∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在拋物線C1隨頂點A平移的過程中,

AB的長度不變,∠ABN的大小不變,

∴BN和AN的長度也不變,即點A與點B的橫坐標的差以及縱坐標的差都保持不變.

同理,點C與點D的橫坐標的差以及縱坐標的差也保持不變.

由(1)知當點A的坐標為(3,-2)時,點B的坐標為(-1,-3),

∴當點A的坐標為(t,t-2)時,點B的坐標為(t-1,t-3).

∵AC∥x軸,

∴點C的縱坐標為t-2.

∵點C在直線l2:y=x上,

∴點C的坐標為(2t-4,t-2).

令t=2,則點C的坐標為(3,3).

∴拋物線C2的解析式為y=x2.

∵點D在直線l2:y=x上,

∴設點D的坐標為(x,).

∵點D在拋物線C2:y=x2上,

∴=x2.

解得x=或x=3.

∵點C與點D不重合,

∴點D的坐標為(,).

∴當點C的坐標為(3,3)時,點D的坐標為(,).

∴當點C的坐標為(2t-4,t-2)時,點D的坐標為(2t?,t?).

∵BD⊥AC,

∴t?1=2t?.

∴t=.

②t的取值范圍是t<或t>4.

設直線l1與l2交于點M.隨著點A從左向右運動,從點D與點M重合,到點B與點M重合的過程中,以A,B,C,D為頂點構(gòu)成的圖形不是凸四邊形.

【點睛】本題考查了二次函數(shù)綜合題,掌握待定系數(shù)法求得函數(shù)的解析式,點到直線的距離,平行于坐標軸的點的特點,方程思想的運用是解題的關(guān)鍵.22、(1)證明見解析;(2)證明見解析.【解析】(1)由BA?BD=BC?BE得,結(jié)合∠B=∠B,可證△ABC∽△EBD;(2)先根據(jù)BA?BD=BC?BE,∠B=∠B,證明△BAE∽△BCD,再證明△ADC∽△ACB,根據(jù)相似三角形的對應邊長比例可證明結(jié)論.【詳解】(1)證明:∵BA?BD=BC?BE.∴,∵∠B=∠B,∴△BDE∽△BCA;(2)證明:∵BA?BD=BC?BE.∴,∵∠B=∠B,∴△BAE∽△BCD,∴,∵AE=AC,∴,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠B=∠ACD.∵∠BAC=∠BAC∴△ADC∽△ACB,∴.【點睛】本題主要考查相似三角形的判定與性質(zhì),熟練掌握兩三角形相似的判定方法是解題的關(guān)鍵.相似三角形的判定方法有:①對應角相等,對應邊成比例的兩個三角形叫做相似三角形;②平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似;③根據(jù)兩角相等的兩個三角形相似;④兩邊對應成比例,且夾角相等的兩個三角形相似判定即可;⑤三邊對應成比例得兩個三角形相似.23、(1)點A的坐標為(4,0),點B的坐標為(﹣1,0),點C的坐標為(0,1);(1)證明見解析;(3)t=.【分析】(1)利用x=0和y=0解方程即可求出A、B、C三點坐標;

(1)先計算△ABC的三邊長,根據(jù)勾股定理的逆定理可得結(jié)論;

(3)先證明△AEF∽△ACB,得∠AEF=∠ACB=90°,確定△AEF沿EF翻折后,點A落在x軸上點D處,根據(jù)△DCO≌△BCO時,BO=OD,列方程4-4t=1,可得結(jié)論.【詳解】(1)解:當y=0時,﹣x+1=0,解得:x1=1,x1=4,∴點A的坐標為(4,0),點B的坐標為(﹣1,0),當x=0時,y=1,∴點C的坐標為(0,1);(1)證明:∵A(4,0),B(﹣1,0),C(0,1),∴OA=4,OB=1,OC=1.∴AB=5,AC==,∴AC1+BC1=15=AB1,∴△ABC為直角三角形;(3)解:由(1)可知△ABC為直角三角形.且∠ACB=90°,∵AE=1t,AF=t,∴,又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,點A落在x軸上點D處,由翻折知,DE=AE,∴AD=1AE=4t,當△DCO≌△BCO時,BO=OD,∵OD=4﹣4t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論