2023-2024學(xué)年江蘇省蘇州市梁豐初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
2023-2024學(xué)年江蘇省蘇州市梁豐初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
2023-2024學(xué)年江蘇省蘇州市梁豐初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
2023-2024學(xué)年江蘇省蘇州市梁豐初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
2023-2024學(xué)年江蘇省蘇州市梁豐初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省蘇州市梁豐初級中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,F(xiàn)是平行四邊形ABCD對角線BD上的點,BF:FD=1:3,則BE:EC=()A. B. C. D.2.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°3.已知⊙O的半徑是4,圓心O到直線l的距離d=1.則直線l與⊙O的位置關(guān)系是()A.相離 B.相切 C.相交 D.無法判斷4.若|a+3|+|b﹣2|=0,則ab的值為()A.﹣6B.﹣9C.9D.65.如圖,為的直徑,弦于點,,,則的半徑為()A.5 B.8 C.3 D.106.已知關(guān)于x的一元二次方程有兩個實數(shù)根,則k的取值范圍是()A. B.且C.且 D.7.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.8.從一個不透明的口袋中摸出紅球的概率為,已知口袋中的紅球是3個,則袋中共有球的個數(shù)是()A.5 B.8 C.10 D.159.若關(guān)于x的方程kx2﹣2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣110.某同學(xué)用一根長為(12+4π)cm的鐵絲,首尾相接圍成如圖的扇形(不考慮接縫),已知扇形半徑OA=6cm,則扇形的面積是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm2二、填空題(每小題3分,共24分)11.如圖,正方形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為,則AK=.12.函數(shù)y=(m為常數(shù))的圖象上有三點(﹣1,y1)、、,則函數(shù)值y1、y2、y3的大小關(guān)系是_____.(用“<”符號連接)13.如圖,在平面直角坐標系中,將邊長為1的正方形繞點逆時針旋轉(zhuǎn)45°后得到正方形,繼續(xù)旋轉(zhuǎn)至2020次得到正方形,那點的坐標是__________.14.一張直角三角形紙片,,,,點為邊上的任一點,沿過點的直線折疊,使直角頂點落在斜邊上的點處,當是直角三角形時,則的長為_____.15.某劇場共有個座位,已知每行的座位數(shù)都相同,且每行的座位數(shù)比總行數(shù)少,求每行的座位數(shù).如果設(shè)每行有個座位,根據(jù)題意可列方程為_____________.16.如圖,的半徑為,的面積為,點為弦上一動點,當長為整數(shù)時,點有__________個.17.如圖,在平面直角坐標系中,邊長為6的正六邊形ABCDEF的對稱中心與原點O重合,點A在x軸上,點B在反比例函數(shù)位于第一象限的圖象上,則k的值為.18.如圖,⊙O是等邊△ABC的外接圓,弦CP交AB于點D,已知∠ADP=75°,則∠POB等于_______°.三、解答題(共66分)19.(10分)如圖,已知點C(0,3),拋物線的頂點為A(2,0),與y軸交于點B(0,1),F(xiàn)在拋物線的對稱軸上,且縱坐標為1.點P是拋物線上的一個動點,過點P作PM⊥x軸于點M,交直線CF于點H,設(shè)點P的橫坐標為m.(1)求拋物線的解析式;(2)若點P在直線CF下方的拋物線上,用含m的代數(shù)式表示線段PH的長,并求出線段PH的最大值及此時點P的坐標;(3)當PF﹣PM=1時,若將“使△PCF面積為2”的點P記作“巧點”,則存在多個“巧點”,且使△PCF的周長最小的點P也是一個“巧點”,請直接寫出所有“巧點”的個數(shù),并求出△PCF的周長最小時“巧點”的坐標.20.(6分)如圖,拋物線與軸交于、兩點,與軸交于點,且,.(1)求拋物線的解析式;(2)已知拋物線上點的橫坐標為,在拋物線的對稱軸上是否存在點,使得的周長最???若存在,求出點的坐標;若不存在,請說明理由.21.(6分)若二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于點A(4,0),與y軸交于點B,且過點C(3,﹣2).(1)求二次函數(shù)表達式;(2)若點P為拋物線上第一象限內(nèi)的點,且S△PBA=5,求點P的坐標;(3)在AB下方的拋物線上是否存在點M,使∠ABO=∠ABM?若存在,求出點M到y(tǒng)軸的距離;若不存在,請說明理由.22.(8分)如圖,在矩形ABCD中,AB=6cm,BC=8cm.點P從點B出發(fā)沿邊BC向點C以2cm/s的速度移動,點Q從C點出發(fā)沿CD邊向點B以1cm/s的速度移動.如果P、Q同時出發(fā),幾秒鐘后,可使△PCQ的面積為五邊形ABPQD面積的?23.(8分)在平面直角坐標系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應(yīng)點分別為,記旋轉(zhuǎn)角為.(1)如圖①,當時,求點的坐標;(2)如圖②,當點落在的延長線上時,求點的坐標;(3)當點落在線段上時,求點的坐標(直接寫出結(jié)果即可).24.(8分)如圖,的直徑為,點在上,點,分別在,的延長線上,,垂足為,.(1)求證:是的切線;(2)若,,求的長.25.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(3,2)、B(3,5)、C(1,2).⑴在平面直角坐標系中畫出△ABC關(guān)于原點對稱的△A1B1C1;⑵把△ABC繞點A順時針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2,點C2在AB上.請寫出:①旋轉(zhuǎn)角為度;②點B2的坐標為.26.(10分)如圖是某貨站傳送貨物的平面示意圖.原傳送帶與地面的夾角為,,為了縮短貨物傳送距離,工人師傅欲增大傳送帶與地面的夾角,使其由改為,原傳送帶長為.求:(1)新傳送帶的長度;(2)求的長度.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題解析:是平行四邊形,故選A.2、B【分析】根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.3、A【解析】根據(jù)直線和圓的位置關(guān)系的判定方法,即圓心到直線的距離大于半徑,則直線與圓相離進行判斷.【詳解】解:∵圓心O到直線l的距離d=1,⊙O的半徑R=4,∴d>R,∴直線和圓相離.故選:A.【點睛】本題考查直線與圓位置關(guān)系的判定.掌握半徑和圓心到直線的距離之間的數(shù)量關(guān)系是解答此題的關(guān)鍵..4、C【解析】根據(jù)非負數(shù)的性質(zhì)可得a+3=1,b﹣2=1,解得a=﹣3,b=2,所以ab=(﹣3)2=9,故選C.點睛:本題考查了非負數(shù)的性質(zhì):幾個非負數(shù)的和為1時,這幾個非負數(shù)都為1.5、A【分析】作輔助線,連接OA,根據(jù)垂徑定理得出AE=BE=4,設(shè)圓的半徑為r,再利用勾股定理求解即可.【詳解】解:如圖,連接OA,設(shè)圓的半徑為r,則OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案為:A.【點睛】本題考查的知識點主要是垂徑定理、勾股定理及其應(yīng)用問題;解題的關(guān)鍵是作輔助線,靈活運用勾股定理等幾何知識點來分析、判斷或解答.6、C【分析】若一元二次方程有兩個實數(shù)根,則根的判別式△=b24ac≥1,建立關(guān)于k的不等式,求出k的取值范圍.還要注意二次項系數(shù)不為1.【詳解】解:∵一元二次方程有兩個實數(shù)根,∴,解得:,∵,∴k的取值范圍是且;故選:C.【點睛】本題考查了一元二次方程根的判別式的應(yīng)用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.7、C【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).8、D【分析】根據(jù)概率公式,即可求解.【詳解】3÷=15(個),答:袋中共有球的個數(shù)是15個.故選D.【點睛】本題主要考查概率公式,掌握概率公式,是解題的關(guān)鍵.9、C【分析】根據(jù)根的判別式()即可求出答案.【詳解】由題意可知:∴∵∴且,故選:C.【點睛】本題考查了根的判別式的應(yīng)用,因為存在實數(shù)根,所以根的判別式成立,以此求出實數(shù)k的取值范圍.10、A【分析】首先根據(jù)鐵絲長和扇形的半徑求得扇形的弧長,然后根據(jù)弧長公式求得扇形的圓心角,然后代入扇形面積公式求解即可.【詳解】解:∵鐵絲長為(12+4π)cm,半徑OA=6cm,∴弧長為4πcm,∴扇形的圓心角為:=120°,∴扇形的面積為:=12πcm2,故選:A.【點睛】本題考查了扇形的面積的計算,解題的關(guān)鍵是了解扇形的面積公式及弧長公式,難度不大.二、填空題(每小題3分,共24分)11、.【詳解】連接BH,如圖所示:∵四邊形ABCD和四邊形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB?tan∠ABH==1,∴EH=1,∴FH=,在Rt△FKH中,∠FKH=30°,∴KH=2FH=,∴AK=KH﹣AH==;故答案為.考點:旋轉(zhuǎn)的性質(zhì).12、y2<y1<y1【分析】根據(jù)反比例函數(shù)的比例系數(shù)的符號可得反比例函數(shù)所在象限為一、三,其中在第三象限的點的縱坐標總小于在第一象限的縱坐標,進而判斷在同一象限內(nèi)的點(﹣1,y1)和(,y2)的縱坐標的大小即可.【詳解】解:∵反比例函數(shù)的比例系數(shù)為m2+1>0,∴圖象的兩個分支在一、三象限;∵第三象限的點的縱坐標總小于在第一象限的縱坐標,點(﹣1,y1)和(,y2)在第三象限,點(,y1)在第一象限,∴y1最小,∵﹣1<,y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】考查反比例函數(shù)圖象上點的坐標特征;用到的知識點為:反比例函數(shù)的比例系數(shù)小于0,圖象的2個分支在一、三象限;第三象限的點的縱坐標總小于在第一象限的縱坐標;在同一象限內(nèi),y隨x的增大而減小.13、(-1,-1)【分析】連接OB,根據(jù)圖形可知,點B在以點O為圓心、、OB為半徑的圓上運用,將正方形OABC繞點O逆時針依次旋轉(zhuǎn)45°,可得點B的對應(yīng)點坐標,根據(jù)圖形及對應(yīng)點的坐標發(fā)現(xiàn)是8次一個循環(huán),進而得出結(jié)論.【詳解】解:如圖,∵四邊形OABC是正方形,且OA=1,∴B(1,1),連接OB,由勾股定理可得,由旋轉(zhuǎn)的性質(zhì)得:將正方形OABC繞點O逆時針依次旋轉(zhuǎn)45°,得:,∴,,,,…,可發(fā)現(xiàn)8次一循環(huán),∵,∴點的坐標為,故答案為.【點睛】本題考查了幾何圖形的規(guī)律探究,根據(jù)計算得出“8次一個循環(huán)”是解題的關(guān)鍵.14、或【分析】依據(jù)沿過點D的直線折疊,使直角頂點C落在斜邊AB上的點E處,當△BDE是直角三角形時,分兩種情況討論:∠DEB=90°或∠BDE=90°,分別依據(jù)勾股定理或者相似三角形的性質(zhì),即可得到CD的長【詳解】分兩種情況:①若,則,,連接,則,,,設(shè),則,中,,解得,;②若,則,,四邊形是正方形,,,,,設(shè),則,,,,解得,,綜上所述,的長為或,故答案為或.【點睛】此題考查折疊的性質(zhì),勾股定理,全等三角形的判定與性質(zhì),解題關(guān)鍵在于畫出圖形15、x(x+12)=1【分析】設(shè)每行有個座位,根據(jù)等量關(guān)系,列出一元二次方程,即可.【詳解】設(shè)每行有個座位,則總行數(shù)為(x+12)行,根據(jù)題意,得:x(x+12)=1,故答案是:x(x+12)=1.【點睛】本題主要考查一元二次方程的實際應(yīng)用,找出等量關(guān)系,列出方程,是解題的關(guān)鍵.16、4【分析】從的半徑為,的面積為,可得∠AOB=90°,故OP的最小值為OP⊥AB時,為3,最大值為P與A或B點重合時,為6,故,當長為整數(shù)時,OP可以為5或6,根據(jù)圓的對稱性,這樣的P點共有4個.【詳解】∵的半徑為,的面積為∴∠AOB=90°又OA=OB=6∴AB=當OP⊥AB時,OP有最小值,此時OP=AB=當P與A或B點重合時,OP有最大值,為6,故當OP長為整數(shù)時,OP可以為5或6,根據(jù)圓的對稱性,這樣的P點共有4個.故答案為:4【點睛】本題考查的是圓的對稱性及最大值、最小值問題,根據(jù)“垂線段最短”確定OP的取值范圍是關(guān)鍵.17、【解析】試題分析:連接OB,過B作BM⊥OA于M,∵六邊形ABCDEF是正六邊形,∴∠AOB=10°.∵OA=OB,∴△AOB是等邊三角形.∴OA=OB=AB=1.∴BM=OB?sin∠BOA=1×sin10°=,OM=OB?COS10°=2.∴B的坐標是(2,).∵B在反比例函數(shù)位于第一象限的圖象上,∴k=2×=.18、90【分析】先根據(jù)等邊三角形的的性質(zhì)和三角形的外角性質(zhì)求出∠ACP,進而求得可得∠BCP,最后根據(jù)圓周角定理∠BOP=2∠BCP=90°.【詳解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案為90.【點睛】此題主要考查了等邊三角形的的性質(zhì),三角形外角的性質(zhì),以及圓周角定理,關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.三、解答題(共66分)19、(1)y=(x﹣2)2,即y=x2﹣x+1;(2)m=0時,PH的值最大最大值為2,P(0,2);(3)△PCF的巧點有3個,△PCF的周長最小時,“巧點”的坐標為(0,1).【解析】(1)設(shè)拋物線的解析式為y=a(x﹣2)2,將點B的坐標代入求得a的值即可;(2)求出直線CF的解析式,求出點P、H的坐標,構(gòu)建二次函數(shù)即可解決問題;(3)據(jù)三角形的面積公式求得點P到CF的距離,過點C作CG⊥CF,取CG=.則點G的坐標為(﹣1,2)或(1,4),過點G作GH∥FC,設(shè)GH的解析式為y=﹣x+b,將點G的坐標代入求得直線GH的解析式,將直線GH的解析式與拋物線的解析式,聯(lián)立可得到點P的坐標,當PC+PF最小時,△PCF的周長最小,由PF﹣PM=1可得到PC+PF=PC+PM+1,故此當C、P、M在一條直線上時,△PCF的周長最小,然后可求得此時點P的坐標;【詳解】解:(1)設(shè)拋物線的解析式為y=a(x﹣2)2,將點B的坐標代入得:4a=1,解得a=,∴拋物線的解析式為y=(x﹣2)2,即y=x2﹣x+1.(2)設(shè)CF的解析式為y=kx+3,將點F的坐標F(2,1)代入得:2k+3=1,解得k=﹣1,∴直線CF的解析式為y=﹣x+3,由題意P(m,m2﹣m+1),H(m,﹣m+3),∴PH=﹣m2+2,∴m=0時,PH的值最大最大值為2,此時P(0,2).(3)由兩點間的距離公式可知:CF=2.設(shè)△PCF中,邊CF的上的高線長為x.則×2x=2,解得x=.過點C作CG⊥CF,取CG=.則點G的坐標為(﹣1,2).過點G作GH∥FC,設(shè)GH的解析式為y=﹣x+b,將點G的坐標代入得:1+b=2,解得b=1,∴直線GH的解析式為y=﹣x+1,與y=(x﹣2)2聯(lián)立解得:,所以△PCF的一個巧點的坐標為(0,1).顯然,直線GH在CF的另一側(cè)時,直線GH與拋物線有兩個交點.∵FC為定點,∴CF的長度不變,∴當PC+PF最小時,△PCF的周長最小.∵PF﹣PM=1,∴PC+PF=PC+PM+1,∴當C、P、M在一條直線上時,△PCF的周長最小.∴此時P(0,1).綜上所述,△PCF的巧點有3個,△PCF的周長最小時,“巧點”的坐標為(0,1).【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、兩點間的距離公式、垂線段最短等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會構(gòu)建一次函數(shù),利用方程組確定交點坐標,屬于中考壓軸題.20、(1);(2)存在,點.【分析】(1)由題意先求出A、C的坐標,直接利用待定系數(shù)法即可求得拋物線的解析式;(2)根據(jù)題意轉(zhuǎn)化,BD的長是定值,要使的周長最小則有點、、在同一直線上,據(jù)此進行分析求解.【詳解】解:(1),點的坐標為.,點的坐標為.把,代入,得,解得.拋物線的解析式為.(2)存在.把代入,解得,,點的坐標為.點的橫線坐標為.故點的坐標為.如圖,設(shè)是拋物線對稱軸上的一點,連接、、、,,的周長等于,又的長是定值,點、、在同一直線上時,的周長最小,由、可得直線的解析式為,拋物線的對稱軸是,點的坐標為,在拋物線的對稱軸上存在點,使得的周長最小.【點睛】本題考查二次函數(shù)圖像性質(zhì)的綜合問題,熟練掌握并利用利用待定系數(shù)法即可求出二次函數(shù)的解析式以及運用數(shù)形結(jié)合思維分析是解題的關(guān)鍵.21、(1);(2);(3)存在,點M到y(tǒng)軸的距離為【分析】(1)由待定系數(shù)法可求解析式;(2)設(shè)直線BP與x軸交于點E,過點P作PD⊥OA于D,設(shè)點P(a,a2-a-2),則PD=a2-a-2,利用參數(shù)求出BP解析式,可求點E坐標,由三角形面積公式可求a,即可得點P坐標;(3)如圖2,延長BM到N,使BN=BO,連接ON交AB于H,過點H作HF⊥AO于F,由全等三角形的性質(zhì)和銳角三角函數(shù)求出點N坐標,求出BN解析式,可求點M坐標,即可求解.【詳解】(1)∵二次函數(shù)y=ax2+bx-2的圖象過點A(4,0),點C(3,-2),∴,解得:∴二次函數(shù)表達式為:;(2)設(shè)直線BP與x軸交于點E,過點P作PD⊥OA于D,設(shè)點P(a,a2-a-2),則PD=a2-a-2,∵二次函數(shù)與y軸交于點B,∴點B(0,-2),設(shè)BP解析式為:,∴a2-a-2=ka﹣2,∴,∴BP解析式為:y=()x﹣2,∴y=0時,,∴點E(,0),∵S△PBA=5,∵S△PBA=,∴,∴a=-1(不合題意舍去),a=5,∴點P(5,3);(3)如圖2,延長BM到N,使BN=BO,連接ON交AB于H,過點H作HF⊥AO于F,∵BN=BO,∠ABO=∠ABM,AB=AB,∴△ABO≌△ABN(SAS)∴AO=AN,且BN=BO,∴AB垂直平分ON,∴OH=HN,AB⊥ON,∵AO=4,BO=2,∴AB=,∵S△AOB=×OA×OB=×AB×OH,∴OH=,∴AH=,∵cos∠BAO=,∴,∴AF=,∴HF=,OF=AO﹣AF=4﹣=,∴點H(,-),∵OH=HN,∴點N(,﹣)設(shè)直線BN解析式為:y=mx﹣2,∴﹣=m﹣2,∴m=﹣,∴直線BN解析式為:y=﹣x﹣2,∴x2﹣x﹣2=﹣x﹣2,∴x=0(不合題意舍去),x=,∴點M坐標(,﹣),∴點M到y(tǒng)軸的距離為.【點睛】本題考查二次函數(shù)綜合題、待定系數(shù)法、一次函數(shù)的應(yīng)用、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是構(gòu)建合適的輔助線,靈活運用所學(xué)知識解決問題,難度有點大.22、2秒【分析】用時間t分別表示PC、CQ,求出△PCQ的面積,再由△PCQ的面積為五邊形ABPQD面積的得到△PCQ的面積是矩形的即可解題【詳解】設(shè)時間為t秒,則PC=8-2t,AC=t∴∵△PCQ的面積為五邊形ABPQD面積的∴∴解得t=2【點睛】本題考查一元二次方程的應(yīng)用,本題的關(guān)鍵是把三角形與五邊形的面積轉(zhuǎn)換成與矩形的面積。23、(1)點的坐標為;(2)點的坐標為;(3)點的坐標為.【分析】(1)過點作軸于根據(jù)已知條件可得出AD=6,再直角三角形ADG中可求出DG,AG的長,即可確定點D的坐標.(2)過點作軸于于可得出,根據(jù)勾股定理得出AE的長為10,再利用面積公式求出DH,從而求出OG,DG的長,得出答案(3)連接,作軸于G,由旋轉(zhuǎn)性質(zhì)得到,從而可證,繼而可得出結(jié)論.【詳解】解:(1)過點作軸于,如圖①所示:點,點.,以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,,在中,,,點的坐標為;(2)過點作軸于于,如圖②所示:則,,,,,,,點的坐標為;(3)連接,作軸于G,如圖③所示:由旋轉(zhuǎn)的性質(zhì)得:,,,,,,在和中,,,,,點的坐標為.【點睛】本題考查的知識點是坐標系內(nèi)矩形的旋轉(zhuǎn)問題,用到的知識點有勾股定理,全等三角形的判定與性質(zhì)等,做此類題目時往往需要利用數(shù)形結(jié)合的方法來求解,根據(jù)每一個問題做出不同的輔助線是解題的關(guān)鍵.24、(1)見解析;(2)【分析】(1)連接OC,根據(jù)三角形的內(nèi)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論