版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安陽市重點中學2024屆高三4月高三年級聯(lián)合考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.2.設是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當時,,則,,的大小關系是()A. B. C. D.3.用數(shù)學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+14.已知函數(shù)的導函數(shù)為,記,,…,N.若,則()A. B. C. D.5.已知向量,且,則m=()A.?8 B.?6C.6 D.86.已知復數(shù)z,則復數(shù)z的虛部為()A. B. C.i D.i7.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調遞增區(qū)間為()A. B.C. D.8.設復數(shù)滿足,則()A. B. C. D.9.已知復數(shù),滿足,則()A.1 B. C. D.510.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3311.的展開式中有理項有()A.項 B.項 C.項 D.項12.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.14.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉一周,則所形成的幾何體的體積為.15.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.16.直線(,)過圓:的圓心,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.18.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.19.(12分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.20.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.21.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.22.(10分)已知在平面直角坐標系中,橢圓的焦點為為橢圓上任意一點,且.(1)求橢圓的標準方程;(2)若直線交橢圓于兩點,且滿足(分別為直線的斜率),求的面積為時直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【題目詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【題目點撥】本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.2、C【解題分析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關于x=1對稱.
∵當x≥1時,為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C3、C【解題分析】
首先分析題目求用數(shù)學歸納法證明1+1+3+…+n1=n4【題目詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【題目點撥】本題主要考查數(shù)學歸納法,屬于中檔題./4、D【解題分析】
通過計算,可得,最后計算可得結果.【題目詳解】由題可知:所以所以猜想可知:由所以所以故選:D【題目點撥】本題考查導數(shù)的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.5、D【解題分析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【題目詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【題目點撥】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.6、B【解題分析】
利用復數(shù)的運算法則、虛部的定義即可得出【題目詳解】,則復數(shù)z的虛部為.故選:B.【題目點撥】本題考查了復數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.7、D【解題分析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調遞增區(qū)間得出函數(shù)的單調遞增區(qū)間,可得選項.【題目詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調遞增區(qū)間為().故選:D.【題目點撥】本題主要考查正弦型函數(shù)的周期性,對稱性,單調性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.8、D【解題分析】
根據(jù)復數(shù)運算,即可容易求得結果.【題目詳解】.故選:D.【題目點撥】本題考查復數(shù)的四則運算,屬基礎題.9、A【解題分析】
首先根據(jù)復數(shù)代數(shù)形式的除法運算求出,求出的模即可.【題目詳解】解:,,故選:A【題目點撥】本題考查了復數(shù)求模問題,考查復數(shù)的除法運算,屬于基礎題.10、C【解題分析】
依次遞推求出得解.【題目詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【題目點撥】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.11、B【解題分析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【題目詳解】,,當,,,時,為有理項,共項.故選:B.【題目點撥】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.12、A【解題分析】
設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【題目詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【題目點撥】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據(jù)分層抽樣的定義建立比例關系即可得到結論.【題目詳解】設抽取的樣本為,則由題意得,解得.故答案為:【題目點撥】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.14、【解題分析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉體的組合體.15、等腰三角形【解題分析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,16、;【解題分析】
求出圓心坐標,代入直線方程得的關系,再由基本不等式求得題中最小值.【題目詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【題目點撥】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解題分析】
(1)取中點,連,可得,結合平面EAD⊥平面ABCD,可證平面ABCD,進而有,再由底面是菱形可得,可得,可證得平面,即可證明結論;(2)設底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結論.【題目詳解】(1)取中點,連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點,,平面,平面平面,;(2)設菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【題目點撥】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關系之間的相互轉化,體積問題要熟練應用等體積方法,屬于中檔題.18、(1),表示圓心為,半徑為的圓;(2)【解題分析】
(1)根據(jù)參數(shù)得到直角坐標系方程,再轉化為極坐標方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【題目詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【題目點撥】本題考查了參數(shù)方程,極坐標方程,直線和圓的距離的最值,意在考查學生的計算能力和應用能力.19、(1);(2)【解題分析】
(1)利用正弦定理邊化角,結合兩角和差正弦公式可整理求得,進而求得和,代入求得結果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據(jù)正弦型函數(shù)值域的求解方法,結合的范圍可求得結果.【題目詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【題目點撥】本題考查解三角形知識的相關應用,涉及到正弦定理邊化角的應用、兩角和差正弦公式和輔助角公式的應用、與三角函數(shù)值域有關的取值范圍的求解問題;求解取值范圍的關鍵是能夠利用正弦定理將邊長的問題轉化為三角函數(shù)的問題,進而利用正弦型函數(shù)值域的求解方法求得結果.20、(1)證明見解析;(2).【解題分析】
(1)取中點,連接,,證明平面,由線面垂直的性質可得;(2)由,即可求得三棱錐的體積.【題目詳解】解:(1)證明:取中點D,連接,.因為,,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.【題目點撥】本題考查線面垂直,考查三棱錐體積的計算,解題的關鍵是掌握線面垂直的判定與性質,屬于中檔題.21、(1);(2)【解題分析】
(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據(jù)余弦定理,可得,利用平方關系,可得結果.【題目詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【題目點撥】本題考查正弦定理的應用,屬基礎題.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綜合性能隔墻板分包合作協(xié)議
- 2024年度水利工程水泥涵管質量控制與認證合同范本3篇
- 2025版離婚協(xié)議書賠償條款實務指南與案例分析范文2篇
- 二零二五年度儲煤場地租賃與煤炭交易代理服務合同3篇
- 2025版班主任老帶新教師教學研究與實踐合作合同3篇
- 2024年資源回收與再利用合同
- 幼兒園推普周活動方案例文(4篇)
- 春節(jié)走訪慰問送溫暖活動方案樣本(3篇)
- 經(jīng)理安全工作職責模版(3篇)
- 2024年藝人品牌管理合同3篇
- 針灸推拿試題(附參考答案)
- 《機械制圖》說課課件-畫組合體視圖的方法和步驟
- 2023-2024學年成都市錦江區(qū)四年級數(shù)學第一學期期末統(tǒng)考模擬試題含答案
- (完整版)初中英語語法專練動名詞Word版含答案
- 幼兒園醫(yī)護助教知識學習培訓PPT
- 管體結構尺寸與配筋設計圖冊
- 2022年版《義務教育數(shù)學課程標準》及解讀
- 井下作業(yè)風險識別與控制
- 《義務教育地理課程標準(2022年版)》全文學習解讀-2022年版義務教育課
- 2019天線年會交流-毫米波有源相控陣現(xiàn)狀及其發(fā)展趨勢
- 畢淑敏中考閱讀理解14篇(含答案)
評論
0/150
提交評論