版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省舒城桃溪中學2024年數(shù)學高三上期末調研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義域為R的偶函數(shù)滿足任意,有,且當時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.2.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.3.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40404.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.5.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.6.已知等式成立,則()A.0 B.5 C.7 D.137.在中,,則=()A. B.C. D.8.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.9.已知函數(shù)的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.10.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.11.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變12.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.14.已知,則滿足的的取值范圍為_______.15.已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.16.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經(jīng)過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.18.(12分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.19.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,證明:對;(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。20.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:為定值.21.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.22.(10分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當時,,當,當,作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應用,解題過程中用到了數(shù)形結合方法,這也是高考??嫉臒狳c問題,屬于中檔題.2、C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.3、D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學生的計算能力和應用能力.4、D【解析】
集合.為自然數(shù)集,由此能求出結果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.5、B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎題.6、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.7、B【解析】
在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.8、B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎題.9、A【解析】
可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數(shù)的增減性,結合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數(shù)形結合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關鍵,屬于中檔題10、C【解析】
由于中正項與負項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.11、C【解析】
根據(jù)線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.12、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數(shù)量積的坐標運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數(shù)量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質,屬于中檔題.14、【解析】
將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數(shù)的奇偶性與單調性的判定以及應用,注意分析f(x)的奇偶性與單調性.15、【解析】
作出圖象,求出方程的根,分類討論的正負,數(shù)形結合即可.【詳解】當時,令,解得,所以當時,,則單調遞增,當時,,則單調遞減,當時,單調遞減,且,作出函數(shù)的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據(jù)圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數(shù)零點與函數(shù)圖象的關系,考查利用導數(shù)研究函數(shù)的單調性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.16、【解析】
依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關于x軸對稱,所以圓心E在x軸上,設圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉化與化歸思想,本題關鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯(lián)立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.18、(1);(2),或,.【解析】
(1)利用正弦定理,轉化原式為,結合,可得,即得解;(2)由余弦定理,結合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.19、(1)見證明;(2)【解析】
(1)利用導數(shù)說明函數(shù)的單調性,進而求得函數(shù)的最小值,得到要證明的結論;(2)問題轉化為導函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數(shù)的單調性及值域,從而得到結論.法二:構造函數(shù),利用函數(shù)的導數(shù)判斷函數(shù)的單調性求得函數(shù)的值域,再利用零點存在定理說明函數(shù)存在極值.【詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數(shù),注意到,,所以,存在唯一實數(shù),使得成立.于是,當時,,為上的減函數(shù);當時,,為上的增函數(shù);所以為函數(shù)的極小值點;②當時,在上成立,所以在上單調遞增,所以在上沒有極值;③當時,在上成立,所以在上單調遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點.即在上存在零點.設,,則由單調性的性質可得為上的減函數(shù).即的值域為,所以,當實數(shù)時,在上存在零點.下面證明,當時,函數(shù)在上存在極值.事實上,當時,為上的增函數(shù),注意到,,所以,存在唯一實數(shù),使得成立.于是,當時,,為上的減函數(shù);當時,,為上的增函數(shù);即為函數(shù)的極小值點.綜上所述,當時,函數(shù)在上存在極值.【點睛】本題考查利用導數(shù)研究函數(shù)的最值,涉及函數(shù)的單調性,導數(shù)的應用,函數(shù)的最值的求法,考查構造法的應用,是一道綜合題.20、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設,則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關于軸對稱,設,,設,由于點在橢圓C上,所以,由,則,.由于,故當時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設,則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質、圓的軌跡方程、直線與橢圓的位置關系中定值問題,考查了學生的計算能力,屬于中檔題.21、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年外研版2024高三化學上冊階段測試試卷
- 2025年湘師大新版七年級生物下冊階段測試試卷含答案
- 2025年度高端定制門頭裝修設計與施工合同規(guī)范4篇
- 二零二五版創(chuàng)業(yè)團隊股權激勵及轉讓合同樣本5篇
- 技能更新職業(yè)培訓合同(2篇)
- 二零二五年互聯(lián)網(wǎng)金融服務合同風險控制3篇
- 二零二五年度定制豪華鐵門表面處理合同范本
- 二零二五年度LNG運輸合同-公路運輸及安全應急預案編制協(xié)議3篇
- 二零二五年度儲罐租賃及遠程監(jiān)控服務合同4篇
- 2025年酒吧人員緊急疏散預案合同范本3篇
- 山東鐵投集團招聘筆試沖刺題2025
- 真需求-打開商業(yè)世界的萬能鑰匙
- 2025年天津市政集團公司招聘筆試參考題庫含答案解析
- GB/T 44953-2024雷電災害調查技術規(guī)范
- 2024-2025學年度第一學期三年級語文寒假作業(yè)第三天
- 2024年列車員技能競賽理論考試題庫500題(含答案)
- 心律失常介入治療
- 《無人機測繪技術》項目3任務2無人機正射影像數(shù)據(jù)處理
- 6S精益實戰(zhàn)手冊
- 展會場館保潔管理服務方案
- 監(jiān)理從業(yè)水平培訓課件
評論
0/150
提交評論