河南省周口市商水縣周口中英文學校2024屆高考模擬考試試題(一)數學試題_第1頁
河南省周口市商水縣周口中英文學校2024屆高考模擬考試試題(一)數學試題_第2頁
河南省周口市商水縣周口中英文學校2024屆高考模擬考試試題(一)數學試題_第3頁
河南省周口市商水縣周口中英文學校2024屆高考模擬考試試題(一)數學試題_第4頁
河南省周口市商水縣周口中英文學校2024屆高考模擬考試試題(一)數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省周口市商水縣周口中英文學校2024屆高考模擬考試試題(一)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列為等差數列,為其前項和,,則()A. B. C. D.2.設函數的定義域為,命題:,的否定是()A., B.,C., D.,3.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)4.復數().A. B. C. D.5.已知函數滿足=1,則等于()A.- B. C.- D.6.已知菱形的邊長為2,,則()A.4 B.6 C. D.7.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.8.已知數列是公比為的正項等比數列,若、滿足,則的最小值為()A. B. C. D.9.設(是虛數單位),則()A. B.1 C.2 D.10.執(zhí)行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.11.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于12.已知復數(1+i)(a+i)為純虛數(i為虛數單位),則實數a=()A.-1 B.1 C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的前項和為,且,則______.14.已知,且,則__________.15.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.16.設,分別是橢圓C:()的左、右焦點,直線l過交橢圓C于A,B兩點,交y軸于E點,若滿足,且,則橢圓C的離心率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數,并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.18.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數,求隨機變量的分布列及數學期望.19.(12分)已知數列的各項均為正數,且滿足.(1)求,及的通項公式;(2)求數列的前項和.20.(12分)的內角的對邊分別為,若(1)求角的大?。?)若,求的周長21.(12分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.22.(10分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【題目詳解】由等差數列的性質可得,.故選:B.【題目點撥】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.2、D【解題分析】

根據命題的否定的定義,全稱命題的否定是特稱命題求解.【題目詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【題目點撥】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.3、C【解題分析】

利用終邊相同的角的公式判斷即得正確答案.【題目詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【題目點撥】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.4、A【解題分析】試題分析:,故選A.【考點】復數運算【名師點睛】復數代數形式的四則運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化.5、C【解題分析】

設的最小正周期為,可得,則,再根據得,又,則可求出,進而可得.【題目詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【題目點撥】本題考查三角形函數的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.6、B【解題分析】

根據菱形中的邊角關系,利用余弦定理和數量積公式,即可求出結果.【題目詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【題目點撥】本題主要考查了平面向量的數量積和余弦定理的應用問題,屬于基礎題..7、D【解題分析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【題目詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【題目點撥】本題考查多面體外接球表面積的求法,考查數形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.8、B【解題分析】

利用等比數列的通項公式和指數冪的運算法則、指數函數的單調性求得再根據此范圍求的最小值.【題目詳解】數列是公比為的正項等比數列,、滿足,由等比數列的通項公式得,即,,可得,且、都是正整數,求的最小值即求在,且、都是正整數范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【題目點撥】本題考查等比數列的通項公式和指數冪的運算法則、指數函數性質等基礎知識,考查數學運算求解能力和分類討論思想,是中等題.9、A【解題分析】

先利用復數代數形式的四則運算法則求出,即可根據復數的模計算公式求出.【題目詳解】∵,∴.故選:A.【題目點撥】本題主要考查復數代數形式的四則運算法則的應用,以及復數的模計算公式的應用,屬于容易題.10、D【解題分析】循環(huán)依次為直至結束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環(huán)結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環(huán)結構、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數學問題,是求和還是求項.11、C【解題分析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.12、B【解題分析】

化簡得到z=a-1+a+1【題目詳解】z=1+ia+i=a-1+a+1i為純虛數,故a-1=0故選:B.【題目點撥】本題考查了根據復數類型求參數,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據等差數列的性質求得,結合等差數列前項和公式求得的值.【題目詳解】因為為等差數列,所以,解得,所以.故答案為:【題目點撥】本小題考查等差數列的性質,前項和公式的應用等基礎知識;考查運算求解能力,應用意識.14、【解題分析】試題分析:因,故,所以,,應填.考點:三角變換及運用.15、【解題分析】

根據題意設為橢圓上任意一點,表達出,再根據二次函數的對稱軸與求解的關系分析最值求解即可.【題目詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設為橢圓上任意一點,則.所以因為的對稱軸為.(i)當時,在上單調遞增,在上單調遞減.此時,解得.(ii)當時,在上單調遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【題目點撥】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據題意設橢圓上的點,再求出距離,根據二次函數的對稱軸與區(qū)間的關系分析最值的取值點分類討論求解.屬于中檔題.16、【解題分析】

采用數形結合,計算以及,然后根據橢圓的定義可得,并使用余弦定理以及,可得結果.【題目詳解】如圖由,所以由,所以又,則所以所以化簡可得:則故答案為:【題目點撥】本題考查橢圓的定義以及余弦定理的使用,關鍵在于根據角度求出線段的長度,考查分析能力以及計算能力,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最小值為.(3)時,面積取最小值為【解題分析】

(1),利用三角函數定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數判斷函數的單調性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數求得的最大值,即可求得的最小值.【題目詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調遞增,在上單調遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設,則,設,則,令,,所以當時,;當時,,所以在上單調遞增,在上單調遞減,故當,即時,面積取最小值為【題目點撥】本題考查三角函數定義的應用,考查利用導函數求最值,考查運算能力.18、(1)(2)(i)(ii)分布列見解析,【解題分析】

(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數學期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數學期望為.【題目點撥】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數學運算的能力,屬于中檔題.19、(1);.;(2)【解題分析】

(1)根據題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數列,利用等比數列的前項和公式,即可求得的前項和.【題目詳解】解:(1)由題可知,,且,當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論