2023年福建省福州市鼓樓區(qū)屏東中學數(shù)學九年級第一學期期末達標測試試題含解析_第1頁
2023年福建省福州市鼓樓區(qū)屏東中學數(shù)學九年級第一學期期末達標測試試題含解析_第2頁
2023年福建省福州市鼓樓區(qū)屏東中學數(shù)學九年級第一學期期末達標測試試題含解析_第3頁
2023年福建省福州市鼓樓區(qū)屏東中學數(shù)學九年級第一學期期末達標測試試題含解析_第4頁
2023年福建省福州市鼓樓區(qū)屏東中學數(shù)學九年級第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年福建省福州市鼓樓區(qū)屏東中學數(shù)學九年級第一學期期末達標測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.某閉合并聯(lián)電路中,各支路電流與電阻成反比例,如圖表示該電路與電阻的函數(shù)關系圖象,若該電路中某導體電阻為,則導體內(nèi)通過的電流為()A. B. C. D.2.已知,則的度數(shù)是()A.30° B.45° C.60° D.90°3.若點A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函數(shù)y=(k>0)的圖象上,則y1,y2,y3的大小關系是()A.<< B.<< C.<< D.<<4.如圖,△ABC的頂點都是正方形網(wǎng)格中的格點,則cos∠ABC等于()A. B. C. D.5.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>26.半徑為6的圓上有一段長度為1.5的弧,則此弧所對的圓心角為()A. B. C. D.7.如圖,點在線段上,在的同側(cè)作等腰和等腰,與、分別交于點、.對于下列結論:①;②;③.其中正確的是()A.①②③ B.① C.①② D.②③8.如圖,AD是△ABC的中線,點E在AD上,AD=4DE,連接BE并延長交AC于點F,則AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:39.我市某家快遞公司,今年8月份與10月份完成投遞的快遞總件數(shù)分別為6萬件和8.64萬件,設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,則下列方程正確的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.6410.下列圖象能表示y是x的函數(shù)的是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在?ABCD中,點E是邊AD的中點,EC交對角線BD于點F,則EF:FC等于_____.12.如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=.13.已知二次函數(shù)的圖象如圖所示,則下列四個代數(shù)式:①,②,③;④中,其值小于的有___________(填序號).14.如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB,AD=2,BD=6,則邊AC的長為_____15.如圖,在中,,,,則的長為________.16.在比例尺為1:40000的地圖上,某條道路的長為7cm,則該道路的實際長度是_____km.17.已知A(0,3),B(2,3)是拋物線上兩點,該拋物線的頂點坐標是_________.18.如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標為(3,4),則點F的坐標是_____.三、解答題(共66分)19.(10分)(1)計算:(2)先化簡,再求值:,其中m滿足一元二次方程.20.(6分)如圖,已知雙曲線與直線交于點和點(1)求雙曲線的解析式;(2)直接寫出不等式的解集21.(6分)如圖,在四邊形ABCD中,AD∥BC,AB⊥BD于點B.已知∠A=45°,∠C=60°,,求AD的長.22.(8分)綜合與實踐:操作與發(fā)現(xiàn):如圖,已知A,B兩點在直線CD的同一側(cè),線段AE,BF均是直線CD的垂線段,且BF在AE的右邊,AE=2BF,將BF沿直線CD向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線CD相交于點P,點G是AE的中點,連接BG.探索與證明:求證:(1)四邊形EFBG是矩形;(2)△ABG∽△PBF.23.(8分)解方程:(1)x1﹣1x﹣3=0;(1)3x1﹣6x+1=1.24.(8分)如圖,中,,,平分,交軸于點,點是軸上一點,經(jīng)過點、,與軸交于點,過點作,垂足為,的延長線交軸于點,(1)求證:為的切線;(2)求的半徑.25.(10分)如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)請直接寫出線段AF,AE的數(shù)量關系;(2)將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關系,并證明你的結論;(3)在圖②的基礎上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結論是否發(fā)生變化?若不變,結合圖③寫出證明過程;若變化,請說明理由.26.(10分)關于的一元二次方程有兩個不等實根,.(1)求實數(shù)的取值范圍;(2)若方程兩實根,滿足,求的值。

參考答案一、選擇題(每小題3分,共30分)1、B【分析】電流I(A)與電阻R(Ω)成反比例,可設I=,根基圖象得到圖象經(jīng)過點(5,2),代入解析式就得到k的值,從而能求出解析式.【詳解】解:可設,根據(jù)題意得:,解得k=10,∴.當R=4Ω時,(A).故選B.【點睛】本題主要考查的是反比例函數(shù)的應用,利用待定系數(shù)法是求解析式時常用的方法.2、C【解析】根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:由,得α=60°,

故選:C.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.3、D【分析】先根據(jù)反比例函數(shù)中k>1判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標的特點即可得出結論.【詳解】解:∵反比例函數(shù)y=中k>1,∴函數(shù)圖象的兩個分支分別位于一、三象限,且在每一象限內(nèi)y隨x的增大而減?。擤?<1,∴點C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴點A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故選:D.【點睛】本題考查的是反比例函數(shù)的性質(zhì),掌握反比例函數(shù)圖象所在象限及增減性是解答此題的關鍵.4、B【詳解】由格點可得∠ABC所在的直角三角形的兩條直角邊為2,4,∴斜邊為.∴cos∠ABC=.故選B.5、D【分析】先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標,再由函數(shù)圖象即可得出結論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關于原點對稱,

∴A、B兩點關于原點對稱,

∵點A的橫坐標為1,∴點B的橫坐標為-1,

∵由函數(shù)圖象可知,當-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,

∴當y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結合求出y1>y1時x的取值范圍是解答此題的關鍵.6、B【分析】根據(jù)弧長公式,即可求解.【詳解】∵,∴,解得:n=75,故選B.【點睛】本題主要考查弧長公式,掌握是解題的關鍵.7、A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三邊份數(shù)關系可證;(2)通過等積式倒推可知,證明△PAM∽△EMD即可;(3)2CB2轉(zhuǎn)化為AC2,證明△ACP∽△MCA,問題可證.詳解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正確∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP?MD=MA?ME所以②正確∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四點共圓∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP?CM∵AC=AB∴2CB2=CP?CM所以③正確故選A.點睛:本題考查了相似三角形的性質(zhì)和判斷.在等積式和比例式的證明中應注意應用倒推的方法尋找相似三角形進行證明,進而得到答案.8、A【分析】過點D作DG∥AC,根據(jù)平行線分線段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【詳解】解:過點D作DG∥AC,與BF交于點G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中線,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故選:A.【點睛】本題考查了平行線分線段成比例定理,正確作出輔助線充分利用對應線段成比例的性質(zhì)是解題的關鍵.9、C【分析】設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,根據(jù)今年8月份與10月份完成投遞的快遞總件數(shù),即可得出關于x的一元二次方程,此題得解.【詳解】解:設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,根據(jù)題意得:6(1+x)2=8.1.故選:C.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是熟知增長率的問題.10、D【解析】根據(jù)函數(shù)的定義可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應關系,據(jù)此即可確定答案.【詳解】A.如圖,,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;B.如圖,,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;C.如圖,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;D.對每一個x的值,都有唯一確定的y值與之對應,是函數(shù)圖象.故選:D.【點睛】本題考查了函數(shù)的定義.函數(shù)的定義:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應,則y是x的函數(shù),x叫自變量.二、填空題(每小題3分,共24分)11、2:2【解析】試題分析:此題主要考查了平行四邊形的性質(zhì)以及相似三角形的判定與性質(zhì)等知識,得出△DEF∽△BCF是解題關鍵.根據(jù)題意得出△DEF∽△BCF,進而得出DE:BC=EF:FC,利用點E是邊AD的中點得出答案即可.解:∵?ABCD,故AD∥BC,∴△DEF∽△BCF,∴DE:BC=EF:FC,∵點E是邊AD的中點,∴AE=DE=AD,∴EF:FC=2:2.故選B.考點:2.平行四邊形的性質(zhì);2.相似三角形的判定與性質(zhì).12、π.【解析】圖1,過點O做OE⊥AC,OF⊥BC,垂足為E.

F,則∠OEC=∠OFC=90°∵∠C=90°∴四邊形OECF為矩形∵OE=OF∴矩形OECF為正方形設圓O的半徑為r,則OE=OF=r,AD=AE=3?r,BD=4?r∴3?r+4?r=5,r==1∴S1=π×12=π圖2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴S1+S2=π×()2+π×()2=π.圖3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴⊙F的半徑=,∴S1+S2+S3=π×()2+π×()2+π×()2=π13、②④【分析】①根據(jù)函數(shù)圖象可得的正負性,即可判斷;②令,即可判斷;③令,方程有兩個不相等的實數(shù)根即可判斷;④根據(jù)對稱軸大于0小于1即可判斷.【詳解】①由函數(shù)圖象可得、∵對稱軸∴∴②令,則③令,由圖像可知方程有兩個不相等的實數(shù)根∴④∵對稱軸∴∴綜上所述,值小于的有②④.【點睛】本題考察二次函數(shù)圖象與系數(shù)的關系,充分利用圖象獲取解題的關鍵信息是關鍵.14、1【分析】只要證明△ADC∽△ACB,可得=,即AC2=AD?AB,由此即可解決問題.【詳解】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=1,故答案為:1.【點睛】本題考查相似三角形的判定和性質(zhì)、解題的關鍵是正確尋找相似三角形解決問題,屬于中考??碱}型.15、【分析】過點作的垂線,則得到兩個直角三角形,根據(jù)勾股定理和正余弦公式,求的長.【詳解】過作于點,設,則,因為,所以,則由勾股定理得,因為,所以,則.則.【點睛】本題考查勾股定理和正余弦公式的運用,要學會通過作輔助線得到特殊三角形,以便求解.16、2.1【解析】試題分析:設這條道路的實際長度為x,則:,解得x=210000cm=2.1km,∴這條道路的實際長度為2.1km.故答案為2.1.考點:比例線段.17、(1,4).【解析】試題分析:把A(0,3),B(2,3)代入拋物線可得b=2,c=3,所以=,即可得該拋物線的頂點坐標是(1,4).考點:拋物線的頂點.18、(6,).【分析】過點D作DM⊥OB,垂足為M,先根據(jù)勾股定理求出菱形的邊長,即可得到點B、D的坐標,進而可根據(jù)菱形的性質(zhì)求得點A的坐標,進一步即可求出反比例函數(shù)的解析式,再利用待定系數(shù)法求出直線BC的解析式,然后解由直線BC和反比例函數(shù)的解析式組成的方程組即可求出答案.【詳解】解:過點D作DM⊥OB,垂足為M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四邊形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的對角線交點,∴A(4,2),代入y=,得:k=8,∴反比例函數(shù)的關系式為:y=,設直線BC的關系式為y=kx+b,將B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直線BC的關系式為y=x﹣,將反比例函數(shù)與直線BC聯(lián)立方程組得:,解得:,(舍去),∴F(6,),故答案為:(6,).【點睛】本題考查了菱形的性質(zhì)、勾股定理、待定系數(shù)法求函數(shù)的解析式以及求兩個函數(shù)的交點等知識,屬于??碱}型,正確作出輔助線、熟練掌握上述知識是解題的關鍵.三、解答題(共66分)19、(1)4;(2),【分析】(1)根據(jù)0次冪得1,負指數(shù)冪等于正指數(shù)冪的倒數(shù),特殊三角函數(shù)值等,求出原式中各項的值,再根據(jù)實數(shù)的運算法則進行計算.(2)先依據(jù)因式分解再約分的方法算出除法部分,再根據(jù)異分母分式相加減的法則進行計算.【詳解】(1)解:原式===4(2)解:原式==m2-2m-8=0∴(m-4)(m+2)=0∴m1=4,m2=-2當時分母為0,舍去,∴m=4,∴原式=【點睛】本題考查實數(shù)運算及分式化簡求值,實數(shù)運算往往涉及0次冪,負指數(shù),二次根式,絕對值等,掌握相應的法則是實數(shù)運算的關鍵;依據(jù)分式運算的順序及運算法則是分式化簡的關鍵,使分式有意義的取值是此題易錯點.20、(1);(2)或【分析】(1)將點A坐標代入雙曲線解析式即可得出k的值,從而求出雙曲線的解析式;(2)求出B點坐標,利用圖象即可得解.【詳解】解:(1)∵雙曲線經(jīng)過點,.∴雙曲線的解析式為(2)由雙曲線解析式可得出B(-4,-1),結合圖象可得出,不等式的解集是:或.【點睛】本題考查的知識點是反比例函數(shù)與一次函數(shù)的交點問題,解題的關鍵是從圖象中得出相關信息.21、.【分析】過點D作DE⊥BC于E,在Rt△CDE中,∠C=60°,,則可求出DE,由已知可推出∠DBE=∠ADB=45°,根據(jù)直解三角形的邊角關系依次求出BD,AD即可.【詳解】過點D作DE⊥BC于E∵在Rt△CDE中,∠C=60°,,∴,∵AB⊥BD,∠A=45°,∴∠ADB=45°.∵AD∥BC,∴∠DBE=∠ADB=45°∴在Rt△DBE中,∠DEB=90°,,∴,又∵在Rt△ABD中,∠ABD=90°,∠A=45°,∴.【點睛】本題考查了解直角三角形的知識,正確作出輔助線是解題的關鍵.22、(1)見解析;(2)見解析.【分析】(1)先通過等量代換得出GE=BF,然后由AE⊥CD,BF⊥CD得出AE∥BF,從而得到四邊形EFBG是平行四邊形,最后利用BF⊥CD,則可證明平行四邊形EFBG是矩形;(2)先通過矩形的性質(zhì)得出∠AGB=∠GBF=∠BFE=90°,然后通過等量代換得出∠ABG=∠PBF,再加上∠AGB=∠PFB=90°即可證明△ABG∽△PBF.【詳解】(1)證明:∵AE⊥CD,BF⊥CD,∴AE∥BF,∵AE=2BF,∴BF=AE,∵點G是AE的中點,∴GE=AE,∴GE=BF,又AE∥BF,∴四邊形EFBG是平行四邊形,∵BF⊥CD,∴平行四邊形EFBG是矩形;(2)∵四邊形EFBG是矩形,∴∠AGB=∠GBF=∠BFE=90°,∵∠ABP=90°,∴∠ABP﹣∠GBP=∠GBF﹣∠GBP,即∠ABG=∠PBF,∵∠ABG=∠PBF,∠AGB=∠PFB=90°,∴△ABG∽△PBF.【點睛】本題主要考查矩形的判定及性質(zhì),相似三角形的判定,掌握矩形的判定及性質(zhì)和相似三角形的判定方法是解題的關鍵.23、(1)x1=3,x1=﹣1;(1)x1=,x1=【分析】(1)利用因式分解法求解可得;

(1)整理為一般式,再利用公式法求解可得.【詳解】解:(1)原方程可以變形為(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x1=﹣1;(1)方程整理為一般式為3x1﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴=36﹣4×3×(﹣1)=48>0,則,即.【點睛】本題考查了解一元二次方程,應熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.24、(1)證明見解析;(2)1.【分析】(1)連接CP,根據(jù)等腰三角形的性質(zhì)得到∠PAC=∠PCA,由角平分線的定義得到∠PAC=∠EAC,等量代換得到∠PCA=∠EAC,推出PC∥AE,于是得到結論;(2)連接PC,根據(jù)角平分線的定義得到∠BAC=∠OAC,根據(jù)等腰三角形的性質(zhì)得到∠PCA=∠PAC,等量代換得到∠BAC=∠ACP,推出PC∥AB,根據(jù)相似三角形的性質(zhì)即可得到結論.【詳解】(1)證明:連接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切線.(2)連接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半徑為1【點睛】本題考查了角平分線的定義,平行線的判定和性質(zhì),切線的判定,相似三角形的判定和性質(zhì),正確的作出輔助線是解題的關鍵.25、(1)AF=AE;(2)AF=AE,證明詳見解析;(3)結論不變,AF=AE,理由詳見解析.【分析】(1)如圖①中,結論:AF=AE,只要證明△AEF是等腰直角三角形即可.(2)如圖②中,結論:AF=AE,連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論