2023年寧夏銀川十五中數學九年級第一學期期末預測試題含解析_第1頁
2023年寧夏銀川十五中數學九年級第一學期期末預測試題含解析_第2頁
2023年寧夏銀川十五中數學九年級第一學期期末預測試題含解析_第3頁
2023年寧夏銀川十五中數學九年級第一學期期末預測試題含解析_第4頁
2023年寧夏銀川十五中數學九年級第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年寧夏銀川十五中數學九年級第一學期期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,一個游戲轉盤中,紅、黃、藍三個扇形的圓心角度數分別為,,.讓轉盤自由轉動,指針停止后落在黃色區(qū)域的概率是A. B. C. D.2.如圖,矩形的對角線交于點O,已知則下列結論錯誤的是()A. B.C. D.3.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.44.隨著國民經濟快速發(fā)展,我國涌現(xiàn)出一批規(guī)模大、效益高的企業(yè),如大疆、國家核電、華為、鳳凰光學等,以上四個企業(yè)的標志是中心對稱圖形的是()A. B. C. D.5.如圖,在△ABC中,D、E分別是AB、AC的中點,下列說法中不正確的是()A. B. C.△ADE∽△ABC D.6.如圖,在直線上有相距的兩點和(點在點的右側),以為圓心作半徑為的圓,過點作直線.將以的速度向右移動(點始終在直線上),則與直線在______秒時相切.A.3 B.3.5 C.3或4 D.3或3.57.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣368.已知點,,都在反比例函數的圖像上,則()A. B. C. D.9.等腰直角△ABC內有一點P,滿足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.則CP的長等于()A. B.2 C.2 D.310.如圖,若二次函數的圖象的對稱軸是直線,則下列四個結論中,錯誤的是().A. B. C. D.二、填空題(每小題3分,共24分)11.已知拋物線,當時,的取值范圍是______________12.如圖,直線與兩坐標軸相交于兩點,點為線段上的動點,連結,過點作垂直于直線,垂足為,當點從點運動到點時,則點經過的路徑長為__________.13.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,AC的中點,點F是AD的中點.若AB=8,則EF=_____.14.已知關于的一元二次方程有兩個相等的實數根,則的值是__________.15.如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:①四邊形CFHE是菱形;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當點H與點A重合時,EF=2.以上結論中,你認為正確的有.(填序號)16.一個不透明的布袋中裝有3個白球和5個紅球,它們除了顏色不同外,其余均相同,從中隨機摸出一個球,摸到紅球的概率是______.17.經過某十字路口的汽車,它可能直行,也可能向左轉或向右轉,假設這三種可能性大小相同,那么兩輛汽車經過這個十字路口,一輛向左轉,一輛向右轉的概率是_____.18.工程上常用鋼珠來測量零件上小圓孔的寬口,假設鋼珠的直徑是10mm,測得鋼珠頂端離零件表面的距離為8mm,如圖所示,則這個小圓孔的寬口AB的長度為____mm.三、解答題(共66分)19.(10分)工藝商場按標價銷售某種工藝品時,每件可獲利45元;并且進價50件工藝品與銷售40件工藝品的價錢相同.(1)該工藝品每件的進價、標價分別是多少元?(2)若每件工藝品按(1)中求得的進價進貨,標價售出,工藝商場每天可售出該工藝品100件.若每件工藝品降價1元,則每天可多售出該工藝品4件.問每件工藝品降價多少元出售,每天獲得的利潤最大?獲得的最大利潤是多少元?20.(6分)已知二次函數的圖象如圖所示.(1)求這個二次函數的表達式;(2)當﹣1≤x≤4時,求y的取值范圍.21.(6分)如圖,AB是⊙O的直徑,點C、D在⊙O上,AD與BC相交于點E.連接BD,作∠BDF=∠BAD,DF與AB的延長線相交于點F.(1)求證:DF是⊙O的切線;(2)若DF∥BC,求證:AD平分∠BAC;(3)在(2)的條件下,若AB=10,BD=6,求CE的長.22.(8分)如圖,在A島周圍50海里水域有暗礁,一輪船由西向東航行到O處時,發(fā)現(xiàn)A島在北偏東60°方向,輪船繼續(xù)正東方向航行40海里到達B處發(fā)現(xiàn)A島在北偏東45°方向,該船若不改變航向繼續(xù)前進,有無觸礁的危險?(參考數據:)23.(8分)為了豐富校園文化生活,提高學生的綜合素質,促進中學生全面發(fā)展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.(1)小明從中隨機抽取一張卡片是足球社團B的概率是.(2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.24.(8分)在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.(1)當⊙O的半徑r=2時,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點”是;(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;(3)當⊙O的半徑r=2時,直線y=-x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍.25.(10分)用恰當的方法解下列方程.(1)2x2﹣3x﹣1=0(2)x2+2=2x26.(10分)如圖,已知拋物線y=x2+2x的頂點為A,直線y=x+2與拋物線交于B,C兩點.(1)求A,B,C三點的坐標;(2)作CD⊥x軸于點D,求證:△ODC∽△ABC;(3)若點P為拋物線上的一個動點,過點P作PM⊥x軸于點M,則是否還存在除C點外的其他位置的點,使以O,P,M為頂點的三角形與△ABC相似?若存在,請求出這樣的P點坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】求出黃區(qū)域圓心角在整個圓中所占的比例,這個比例即為所求的概率.【詳解】∵黃扇形區(qū)域的圓心角為90°,所以黃區(qū)域所占的面積比例為,即轉動圓盤一次,指針停在黃區(qū)域的概率是,故選B.【點睛】本題將概率的求解設置于轉動轉盤游戲中,考查學生對簡單幾何概型的掌握情況,既避免了單純依靠公式機械計算的做法,又體現(xiàn)了數學知識在現(xiàn)實生活、甚至娛樂中的運用,體現(xiàn)了數學學科的基礎性.用到的知識點為:概率=相應的面積與總面積之比.2、C【分析】根據矩形的性質得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各項即可.【詳解】選項A,∵四邊形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形內角和定理得:∠BAC=∠BDC=∠α,選項A正確;選項B,在Rt△ABC中,tanα=,即BC=m?tanα,選項B正確;選項C,在Rt△ABC中,AC=,即AO=,選項C錯誤;選項D,∵四邊形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,選項D正確.故選C.【點睛】本題考查了矩形的性質和解直角三角形,能熟記矩形的性質是解此題的關鍵.3、B【解析】此題可根據反比例函數圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數系數k的幾何意義得到k的值.【詳解】根據雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經??疾榈囊粋€知識點.4、B【分析】在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,據此依次判斷即可.【詳解】∵在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,∴A、C、D不符合,不是中心對稱圖形,B選項為中心對稱圖形.故選:B.【點睛】本題主要考查了中心對稱圖形的定義,熟練掌握相關概念是解題關鍵.5、D【解析】∵在△ABC中,點D、E分別是AB、AC的中點,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三個選項中的結論正確,D選項中結論錯誤.故選D.6、C【分析】根據與直線AB的相對位置分類討論:當在直線AB左側并與直線AB相切時,根據題意,先計算運動的路程,從而求出運動時間;當在直線AB右側并與直線AB相切時,原理同上.【詳解】解:當在直線AB左側并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO-=6cm∵以的速度向右移動∴此時的運動時間為:÷2=3s;當在直線AB右側并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO+=8cm∵以的速度向右移動∴此時的運動時間為:÷2=4s;綜上所述:與直線在3或4秒時相切故選:C.【點睛】此題考查的是直線與圓的位置關系:相切和動圓問題,掌握相切的定義和行程問題公式:時間=路程÷速度是解決此題的關鍵.7、B【解析】解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.8、D【解析】根據反比例函數的解析式知圖像在二、四象限,y值隨著x的增大而減小,故可作出判斷【詳解】∵k0,∴反比例函數在二、四象限,y值隨著x的增大而減小,又∵,在反比例函數的圖像上,,2∴0,點在第二象限,故,∴,故選D.【點睛】此題主要考察反比例函數的性質,找到點在第二象限是此題的關鍵.9、B【分析】先利用定理求得,再證得,利用對應邊成比例,即可求得答案.【詳解】如圖,∵∠BAC=90°,AB=AC,∴,,設,則,如圖,∴,∴,∴,∴,∵,∴,∴,故選:B【點睛】本題考查了相似三角形的判定和性質,等腰直角三角形的性質,熟練運用相似三角形的判定和性質是本題的關鍵.10、C【分析】根據對稱軸是直線得出,觀察圖象得出,,進而可判斷選項A,根據時,y值的大小與可判斷選項C、D,根據時,y值的大小可判斷選項B.【詳解】由題意知,,即,由圖象可知,,,∴,∴,選項A正確;當時,,選項D正確;∵,∴,選項C錯誤;當時,,選項B正確;故選C.【點睛】本題考查二次函數的圖象與系數a,b,c的關系,學會取特殊點的方法是解本題的關鍵.二、填空題(每小題3分,共24分)11、1≤y<9【分析】根據二次函數的圖象和性質求出拋物線在上的最大值和最小值即可.【詳解】∴拋物線開口向上∴當時,y有最小值,最小值為1當時,y有最大值,最小值為∴當時,的取值范圍是故答案為:.【點睛】本題主要考查二次函數在一定范圍內的最大值和最小值,掌握二次函數的圖象和性質是解題的關鍵.12、【分析】根據直線與兩坐標軸交點坐標的特點可得A、B兩點坐標,由題意可得點M的路徑是以AB的中點N為圓心,AB長的一半為半徑的,求出的長度即可.【詳解】解:∵AM垂直于直線BP,∴∠BMA=90°,∴點M的路徑是以AB的中點N為圓心,AB長的一半為半徑的,連接ON,∵直線y=-x+4與兩坐標軸交A、B兩點,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=,∴ON=,∴故答案為:.【點睛】本題考查了一次函數的綜合題,涉及了兩坐標軸交點坐標及點的運動軌跡,難點在于根據∠BMA=90°,判斷出點M的運動路徑是解題的關鍵,同學們要注意培養(yǎng)自己解答綜合題的能力.13、2【詳解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2,故答案為2.14、【解析】根據方程有兩個相等的實數根,可得b2-4ac=0,方程化為一般形式后代入求解即可.【詳解】原方程化為一般形式為:mx2+(2m+1)x=0,∵方程有兩個相等的實數根∴(2m+1)2-4m×0=0【點睛】本題考查一元二次方程,解題的關鍵是熟練運用一元二次方程的根的判別式,本題屬于基礎題型.15、①③④【解析】解:∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,∴FH∥CG,EH∥CF,∴四邊形CFHE是平行四邊形,由翻折的性質得,CF=FH,∴四邊形CFHE是菱形,(故①正確);∴∠BCH=∠ECH,∴只有∠DCE=30°時EC平分∠DCH,(故②錯誤);點H與點A重合時,設BF=x,則AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,點G與點D重合時,CF=CD=4,∴BF=4,∴線段BF的取值范圍為3≤BF≤4,(故③正確);過點F作FM⊥AD于M,則ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,(故④正確);綜上所述,結論正確的有①③④共3個,故答案為①③④.考點:翻折變換的性質、菱形的判定與性質、勾股定理16、【分析】根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.【詳解】根據題意可得:一個不透明的袋中裝有除顏色外其余均相同的3個白球和5個紅球,共5個,從中隨機摸出一個,則摸到紅球的概率是故答案為:.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.17、【分析】列舉出所有情況,讓一輛向左轉,一輛向右轉的情況數除以總情況數即為所求的可能性.【詳解】一輛向左轉,一輛向右轉的情況有兩種,則概率是.【點睛】本題考查了列表法與樹狀圖法,用到的知識點為:可能性=所求情況數與總情況數之比.18、8【分析】先根據鋼珠的直徑求出其半徑,再構造直角三角形,求出小圓孔的寬口AB的長度的一半,最后乘以2即為所求.【詳解】連接OA,過點O作OD⊥AB于點D,則AB=2AD,∵鋼珠的直徑是10mm,∴鋼珠的半徑是5mm.∵鋼珠頂端離零件表面的距離為8mm,∴OD=3mm.在Rt△AOD中,∵mm,∴AB=2AD=2×4=8mm【點睛】本題是典型的幾何聯(lián)系實際應用題,熟練運用垂徑定理是解題的關鍵.三、解答題(共66分)19、(1)進價為180元,標價為1元,(2)當降價為10元時,獲得最大利潤為4900元.【分析】(1)設工藝品每件的進價為x元,則根據題意可知標價為(x+45)元,根據進價50件工藝品與銷售40件工藝品的價錢相同,列一元一次方程求解即可;(2)設每件應降價a元出售,每天獲得的利潤為w元,根據題意可得w和a的函數關系,利用函數的性質求解即可.【詳解】設每件工藝品的進價為x元,標價為(x+45)元,根據題意,得:50x=40(x+45),解得x=180,x+45=1.答:該工藝品每件的進價180元,標價1元.(2)設每件應降價a元出售,每天獲得的利潤為w元.則w=(45-a)(100+4a)=-4(a-10)2+4900,∴當a=10時,w最大=4900元.【點睛】本題考查了二次函數的性質在實際生活中的應用.最大銷售利潤的問題常利用函數的增減性來解答,吃透題意,確定變量,建立函數模型是解題的關鍵.20、(1)y=﹣(x﹣2)2+1;(2)﹣≤y≤1.【分析】(1)設頂點式y(tǒng)=a(x﹣2)2+1,然后把(0,1)代入求出a即可得到拋物線解析式;(2)分別計算自變量為﹣1和1對應的函數值,然后根據二次函數的性質解決問題.【詳解】解:(1)設拋物線解析式為y=a(x﹣2)2+1,把(0,1)代入得1a+1=1,解得a=﹣,所以拋物線解析式為y=-(x﹣2)2+1.(2)當x=﹣1時,y=﹣(﹣1﹣2)2+1=﹣;當x=1時,y=﹣(1﹣2)2+1=1,∴當-1≤x≤2時,﹣≤y≤1;當2≤x≤1時,1≤y≤1所以當﹣1≤x≤1時,y的取值范圍為﹣≤y≤1.【點睛】本題考查了待定系數法求二次函數的解析式和二次函數的性質.在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出函數關系式,從而代入數值求解.21、(1)證明見解析;(2)證明見解析;(3).【分析】(1)如圖,連結OD,只需推知OD⊥DF即可證得結論;(2)根據平行線的性質得到∠FDB=∠CBD,由圓周角的性質可得∠CAD=∠BAD=∠CBD=∠BDF,即AD平分∠BAC;(3)由勾股定理可求AD的長,通過△BDE∽△ADB,可得,可求DE=,AE=,由銳角三角函數可求CE的長.【詳解】(1)連接OD,CD,∵AB是直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切線;(2)∵DF∥BC,∴∠FDB=∠CBD,∵,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD=,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴,∴,∴DE=,∴AE=AD﹣DE=,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴∴∴CE=【點睛】本題考查了圓的綜合問題,掌握平行線的性質、圓周角的性質、勾股定理、相似三角形的性質以及判定定理、銳角三角函數的定義是解題的關鍵.22、無觸礁的危險.【分析】根據已知條件解直角三角形OAC可得A島距離航線的最短距離AC的值,若AC>50,則無觸礁危險,若AC<50,則有觸礁危險.【詳解】解由題意得:∠AOC=30°,∠ABC=45°,∠ACO=90°,OB=40∠BAC=45°,AC=BC在Rt△OAC中,∠ACO=90°,∠AOC=30°,tan∠AOC=,∴,∴,.因此無觸礁的危險.【點睛】本題考查解直角三角形,由題意畫出幾何圖形把實際問題轉化為解直角三角形是解題關鍵.23、(1);(2)見解析,.【分析】(1)直接根據概率公式求解;(2)利用列表法展示所有12種等可能性結果,再找出小明兩次抽取的卡片中有一張是科技社團D的結果數,然后根據概率公式求解.【詳解】(1)小明從中隨機抽取一張卡片是足球社團B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12種等可能結果,小明兩次抽取的卡片中有一張是科技社團D的結果數為6種,所以小明兩次抽取的卡片中有一張是科技社團D的概率為.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率24、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根據已知條件求出d的范圍:1≤d≤3,再將各點距離O點的距離,進行判斷是否在此范圍內即可,滿足條件的即為隨心點;(2)根據點E(4,3)是⊙O的“隨心點”,可根據,求出d=5,再求出r的范圍即可;(3)如圖a∥b∥c∥d,⊙O的半徑r=2,求出隨心點范圍,再分情況點N在y軸正半軸時,當點N在y軸負半軸時,分情況討論即可.【詳解】(1)∵⊙O的半徑r=2,

∴=3,=1∴1≤d≤3∵A(3,0),

∴OA=3,在范圍內

∴點A是⊙O的“隨心點”∵B(0,4)∴OB=4,而4>3,不在范圍內∴B是不是⊙O的“隨心點”,

∵C(,2),

∴OC=,在范圍內

∴點C是⊙O的“隨心點”,

∵D(,),

∴OD=<1,不在范圍內

∴點D不是⊙O的“隨心點”,

故答案為:A,C(2)∵點E(4,3)是⊙O的“隨心點”∴OE=5,即d=5若,∴r=10若,∴(3)

∵如圖a∥b∥c∥d,⊙O的半徑r=2,隨心點范圍∴∵直線MN的解析式為y=x+b,

∴OM=ON,

①點N在y軸正半軸時,

當點M是⊙O的“隨心點”,此時,點M(-1,0),

將M(-1,0)代入直線MN的解析式y(tǒng)=x+b中,解得,b=1,

即:b的最小值為1,

過點O作OG⊥M'N'于G,

當點G是⊙O的“隨心點”時,此時OG=3,

在Rt△ON'G中,∠ON'G=45°,

∴GO=3∴在Rt△GNN’中,===,

b的最大值為,

∴1≤b≤,

②當點N在y軸負半軸時,同①的方法得出-≤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論