版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年山西省懷仁市數(shù)學九年級第一學期期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,點D在BC上一點,下列條件中,能使△ABC與△DAC相似的是()
A.∠BAD=∠C B.∠BAC=∠BDA C.AB2=BD?BC D.AC2=CD?CB2.如圖,已知的三個頂點均在格點上,則的值為()A. B. C. D.3.下列二次函數(shù),圖像與軸只有一個交點的是()A. B.C. D.4.已知二次函數(shù)的圖象(0≤x≤4)如圖,關于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,無最小值5.如圖,已知正方形ABCD的邊長為2,點E、F分別為AB、BC邊的中點,連接AF、DE相交于點M,則∠CDM等于A. B. C. D.6.如圖,在矩形ABCD中,AB=3,BC=6,若點E,F(xiàn)分別在AB,CD上,且BE=2AE,DF=2FC,G,H分別是AC的三等分點,則四邊形EHFG的面積為()A.1 B. C.2 D.47.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°8.隨機拋擲一枚質(zhì)地均勻的骰子一次,下列事件中,概率最大的是()A.朝上一面的數(shù)字恰好是6 B.朝上一面的數(shù)字是2的整數(shù)倍C.朝上一面的數(shù)字是3的整數(shù)倍 D.朝上一面的數(shù)字不小于29.如圖,在矩形ABCD中,點M從點B出發(fā)沿BC向點C運動,點E、F別是AM、MC的中點,則EF的長隨著M點的運動()A.不變 B.變長 C.變短 D.先變短再變長10.下列說法正確的是().A.“購買1張彩票就中獎”是不可能事件B.“概率為0.0001的事件”是不可能事件C.“任意畫一個三角形,它的內(nèi)角和等于180°”是必然事件D.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次11.如圖,關于拋物線,下列說法錯誤的是()A.頂點坐標為(1,)B.對稱軸是直線x=lC.開口方向向上D.當x>1時,y隨x的增大而減小12.如圖,在⊙O中,是直徑,是弦,于,連接,∠,則下列說法正確的個數(shù)是()①;②;③;④A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.某校開展“節(jié)約每一滴水”活動,為了了解開展活動一個月以來節(jié)約用水的情況,從八年級的400名同學中選取20名同學統(tǒng)計了各自家庭一個月節(jié)約用水情況.如表:節(jié)水量/m30.20.250.30.40.5家庭數(shù)/個24671請你估計這400名同學的家庭一個月節(jié)約用水的總量大約是_____m3.14.如圖,一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,任意轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止時,指針落在紅色區(qū)域的概率為____.15.已知關于x的一元二次方程的常數(shù)項為零,則k的值為_____.16.方程x2﹣9x=0的根是_____.17.如圖,圓是一個油罐的截面圖,已知圓的直徑為5,油的最大深度(),則油面寬度為__________.18.方程的解是_____.三、解答題(共78分)19.(8分)解方程:x(x﹣3)+6=2x.20.(8分)某高速公路建設中,需要確定隧道AB的長度.已知在離地面1800m高度C處的飛機上,測量人員測得正前方A,B兩點處的俯角分別為60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的長.(結果保留根號)21.(8分)如圖,某城建部門計劃在新修的城市廣場的一塊長方形空地上修建一個面積為1200m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為50m,寬為40m.(1)求通道的寬度;(2)某公司希望用80萬元的承包金額承攬修建廣場的工程,城建部門認為金額太高需要降價,通過兩次協(xié)商,最終以51.2萬元達成一致,若兩次降價的百分率相同,求每次降價的百分率.22.(10分)在平面直角坐標系中,拋物線經(jīng)過點,.(1)求這條拋物線所對應的函數(shù)表達式.(2)求隨的增大而減小時的取值范圍.23.(10分)如圖,已知拋物線經(jīng)過點和點,與軸交于點.(1)求此拋物線的解析式;(2)若點是直線下方的拋物線上一動點(不點,重合),過點作軸的平行線交直線于點,設點的橫坐標為.①用含的代數(shù)式表示線段的長;②連接,,求的面積最大時點的坐標;(3)設拋物線的對稱軸與交于點,點是拋物線的對稱軸上一點,為軸上一點,是否存在這樣的點和點,使得以點、、、為頂點的四邊形是菱形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.24.(10分)如圖,已知AB為⊙O的直徑,PA與⊙O相切于A點,點C是⊙O上的一點,且PC=PA.(1)求證:PC是⊙O的切線;(2)若∠BAC=45°,AB=4,求PC的長.25.(12分)如圖,已知在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點D,以AB上點O為圓心作⊙O,使⊙O經(jīng)過點A和點D.(1)判斷直線BC與⊙O的位置關系,并說明理由;(2)若AE=6,劣弧DE的長為π,求線段BD,BE與劣弧DE所圍成的陰影部分的面積(結果保留根號和π).26.李明從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為15立方米的無蓋長方體運輸箱,且此長方體運輸箱底面的長比寬多2米,現(xiàn)已知購買這種鐵皮每平方米需20元,問購買這張矩形鐵皮共花了多少錢?
參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)相似三角形的判定即可.【詳解】△ABC與△DAC有一個公共角,即∠ACB=∠DCA,要使△ABC與△DAC相似,則還需一組角對應相等,或這組相等角的兩邊對應成比例即可,觀察四個選項可知,選項D中的AC即ACCD=CBAC,正好是故選:D.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定是解題關鍵.2、D【分析】過B點作BD⊥AC于D,求得AB、AC的長,利用面積法求得BD的長,利用勾股定理求得AD的長,利用銳角三角函數(shù)即可求得結果.【詳解】過B點作BD⊥AC于D,如圖,
由勾股定理得,,,∵,即,在中,,,,,∴.故選:D.【點睛】本題考查了解直角三角形以及勾股定理的運用,面積法求高的運用;熟練掌握勾股定理,構造直角三角形是解題的關鍵.3、C【分析】根據(jù)拋物線y=ax2+bx+c(a≠0)與x軸只有一個交點,可知b2-4ac=0,據(jù)此判斷即可.【詳解】解:∵二次函數(shù)圖象與x軸只有一個交點,∴b2-4ac=0,A、b2-4ac=22-4×1×(-1)=8,故本選項錯誤;B、b2-4ac=72-4×(-2)×(-7)=-7,故本選項錯誤;C、b2-4ac=(-12)2-4×4×9=0,故本選項正確;D、b2-4ac=(-4)2-4×1×16=-48,故本選項錯誤,故選:C.【點睛】本題考查了二次函數(shù)與x軸的交點,根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸只有一個交點時,得到b2-4ac=0是解題的關鍵.4、C【詳解】由圖像可知,當x=1時,y有最大值2;當x=4時,y有最小值-2.5.故選C.5、A【分析】根據(jù)正方形的特點可知∠CDM=∠DEA,利用勾股定理求出DE,根據(jù)余弦的定義即可求解.【詳解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中點,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故選A.【點睛】此題主要考查余弦的求解,解題的關鍵是熟知余弦的定義.6、C【分析】如圖,延長FH交AB于點M,由BE=2AE,DF=2FC,G、H分別是AC的三等分點,證明EG//BC,F(xiàn)H//AD,進而證明△AEG∽△ABC,△CFH∽△CAD,進而證明四邊形EHFG為平行四邊形,再根據(jù)平行四邊形的面積公式求解即可.【詳解】如圖,延長FH交AB于點M,∵BE=2AE,DF=2FC,AB=AE+BE,CD=CF+DF,∴AE:AB=1:3,CF:CD=1:3,又∵G、H分別是AC的三等分點,∴AG:AC=CH:AC=1:3,∴AE:AB=AG:AC,CF:CD=CH:CA,∴EG//BC,F(xiàn)H//AD,∴△AEG∽△ABC,△CFH∽△CDA,BM:AB=CF:CD=1:3,∠EMH=∠B,∴EG:BC=AE:AB=1:3,HF:AD=CF:CD=1:3,∵四邊形ABCD是矩形,AB=3,BC=6,∴CD=AB=3,AD=BC=6,∠B=90°,∴AE=1,EG=2,CF=1,HF=2,BM=1,∴EM=3-1-1=1,EG=FH,∴EGFH,∴四邊形EHFG為平行四邊形,∴S四邊形EHFG=2×1=2,故選C.【點睛】本題考查了矩形的性質(zhì),相似三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握和靈活運用相關內(nèi)容是解題的關鍵.7、D【解析】由圖可知,OA=10,OD=1.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【點睛】本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.8、D【解析】根據(jù)概率公式,逐一求出各選項事件發(fā)生的概率,最后比較大小即可.【詳解】解:A.朝上一面的數(shù)字恰好是6的概率為:1÷6=;B.朝上一面的數(shù)字是2的整數(shù)倍可以是2、4、6,有3種可能,故概率為:3÷6=;C.朝上一面的數(shù)字是3的整數(shù)倍可以是3、6,有2種可能,故概率為:2÷6=;D.朝上一面的數(shù)字不小于2可以是2、3、4、5、6,有5種可能,,故概率為:5÷6=∵<<<∴D選項事件發(fā)生的概率最大故選D.【點睛】此題考查的是求概率問題,掌握概率公式是解決此題的關鍵.9、A【分析】由題意得EF為三角形AMC的中位線,由中位線的性質(zhì)可得:EF的長恒等于定值AC的一半.【詳解】解:∵E,F(xiàn)分別是AM,MC的中點,
∴,
∵A、C是定點,
∴AC的的長恒為定長,
∴無論M運動到哪個位置EF的長不變,
故選A.【點睛】此題考查的是三角形中位線的性質(zhì),即三角形的中位線平行且等于第三邊的一半.10、C【解析】試題解析:A.“購買1張彩票就中獎”是不可能事件,錯誤;B.“概率為0.0001的事件”是不可能事件,錯誤;C.“任意畫一個三角形,它的內(nèi)角和等于180°”是必然事件,正確;D.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次,錯誤.故選C.11、D【分析】根據(jù)拋物線的解析式得出頂點坐標是(1,-2),對稱軸是直線x=1,根據(jù)a=1>0,得出開口向上,當x>1時,y隨x的增大而增大,根據(jù)結論即可判斷選項.【詳解】解:∵拋物線y=(x-1)2-2,A、因為頂點坐標是(1,-2),故說法正確;B、因為對稱軸是直線x=1,故說法正確;C、因為a=1>0,開口向上,故說法正確;D、當x>1時,y隨x的增大而增大,故說法錯誤.故選D.12、C【分析】先根據(jù)垂徑定理得到,CE=DE,再利用圓周角定理得到∠BOC=40°,則根據(jù)互余可計算出∠OCE的度數(shù),于是可對各選項進行判斷.【詳解】∵AB⊥CD,∴,CE=DE,②正確,∴∠BOC=2∠BAD=40°,③正確,∴∠OCE=90°?40°=50°,④正確;又,故①錯誤;故選:C.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱藞A周角定理.二、填空題(每題4分,共24分)13、130【解析】先計算這20名同學各自家庭一個月的節(jié)水量的平均數(shù),即樣本平均數(shù),然后乘以總數(shù)400即可解答.【詳解】20名同學各自家庭一個月平均節(jié)約用水是:(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),因此這400名同學的家庭一個月節(jié)約用水的總量大約是:400×0.325=130(m3),故答案為130.【點睛】本題考查的是通過樣本去估計總體,只需將樣本“成比例地放大”為總體即可,關鍵是求出樣本的平均數(shù).14、【分析】用紅色區(qū)域的圓心角度數(shù)除以圓的周角的度數(shù)可得到指針落在紅色區(qū)域的概率.【詳解】解:因為藍色區(qū)域的圓心角的度數(shù)為120°,所以指針落在紅色區(qū)域內(nèi)的概率是=,故答案為.【點睛】本題考查了幾何概率:求概率時,已知和未知與幾何有關的就是幾何概率.計算方法是利用長度比,面積比,體積比等.15、1【分析】由一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常數(shù)項為零,即可得,繼而求得答案.【詳解】解:∵一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常數(shù)項為零,∴,由①得:(k﹣1)(k﹣1)=0,解得:k=1或k=1,由②得:k≠1,∴k的值為1,故答案為:1.【點睛】本題是對一元二次方程根的考查,熟練掌握一元二次方程知識是解決本題的關鍵.16、x1=0,x2=1【分析】觀察本題形式,用因式分解法比較簡單,在提取x后,左邊將變成兩個式子相乘為0的情況,讓每個式子分別為0,即可求出x.【詳解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案為x1=0,x2=1.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知因式分解法的應用.17、1【分析】連接OA,先求出OA和OD,再根據(jù)勾股定理和垂徑定理即可求出AD和AB.【詳解】解:連接OA∵圓的直徑為5,油的最大深度∴OA=OC=∴OD=CD-OC=∵根據(jù)勾股定理可得:AD=∴AB=2AD=1m故答案為:1.【點睛】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結合是解決此題的關鍵.18、x1=2,x2=﹣1【解析】解:方程兩邊平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.經(jīng)檢驗,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案為:x1=2,x2=﹣1.三、解答題(共78分)19、x1=2,x2=1.【分析】先去掉括號,再把移到等號的左邊,再根據(jù)因式分解法即可求解.【詳解】解:x(x﹣1)+6=2x,x2﹣1x+6﹣2x=0,x2﹣5x+6=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.【點睛】本題考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步驟:①移項,使方程的右邊化為零;②將方程的左邊分解為兩個一次因式的乘積;③令每個因式分別為零,得到兩個一元一次方程;④解這兩個一元一次方程,它們的解就都是原方程的解.20、隧道AB的長為(1800﹣600)m【分析】易得∠CAO=60°,∠CBO=45°,利用相應的正切值可得BO,AO的長,相減即可得到AB的長.【詳解】解:∵CDOB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在RtCAO中,tan∠CAO==tan60°,∴,∴OA=600,在RtCAO中,tan∠CBO==tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣600.答:隧道AB的長為(1800﹣600)m.【點睛】本題考查了解直角三角形的應用﹣俯角和仰角,解答本題的關鍵是利用三角函數(shù)值得到與所求線段相關線段的長度.21、(1)5m,(2)20%【分析】(1)設通道的寬度為x米.由題意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降價后承包金額的代數(shù)式,再根據(jù)第一次的承包金額列出第二次降價的承包金額的代數(shù)式,然后令它等于51.2即可列出方程.【詳解】(1)設通道寬度為xm,依題意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的寬度為5m.(2)設每次降價的百分率為x,依題意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降價的百分率為20%.【點睛】本題考查了一元二次方程的應用,根據(jù)題意,正確列出關系式是解題的關鍵.22、(1),(2)隨的增大而減小時.【解析】(1)把,代入解析式,解方程組求出a、b的值即可;(2)根據(jù)(1)中所得解析式可得對稱軸,a>0,在對稱軸左側(cè)y隨的增大而減小根據(jù)二次函數(shù)的性質(zhì)即可得答案.【詳解】(1)∵拋物線經(jīng)過點,.∴解得∴這條拋物線所對應的函數(shù)表達式為.(2)∵拋物線的對稱軸為直線,∵,∴圖象開口向上,∴y隨的增大而減小時x<1.【點睛】本題考查待定系數(shù)法確定二次函數(shù)解析式及二次函數(shù)的性質(zhì),a>0,開口向上,在對稱軸左側(cè)y隨的增大而減小,a<0,開口向下,在對稱軸右側(cè)y隨的增大而減小,熟練掌握二次函數(shù)的圖像和性質(zhì)是解題關鍵.23、(1)y=x2﹣4x+1;(2)①用含m的代數(shù)式表示線段PD的長為﹣m2+1m;②△PBC的面積最大時點P的坐標為(,﹣);(1)存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形.點M的坐標為M1(2,1),M2(2,1﹣2),M1(2,1+2).【分析】(1)根據(jù)已知拋物線y=ax2+bx+1(a≠0)經(jīng)過點A(1,0)和點B(1,0)代入即可求解;
(2)①先確定直線BC解析式,根據(jù)過點P作y軸的平行線交直線BC于點D,即可用含m的帶上書表示出P和D的坐標進而求解;
②用含m的代數(shù)式表示出△PBC的面積,可得S是關于m的二次函數(shù),即可求解;
(1)根據(jù)(1)中所得二次函數(shù)圖象和對稱軸先得點E的坐標即可寫出點三個位置的點M的坐標.【詳解】(1)∵拋物線y=ax2+bx+1(a≠0)經(jīng)過點A(1,0)和點B(1,0),與y軸交于點C,∴,解得,∴拋物線解析式為y=x2﹣4x+1;(2)①設P(m,m2﹣4m+1),將點B(1,0)、C(0,1)代入得直線BC解析式為yBC=﹣x+1.∵過點P作y軸的平行線交直線BC于點D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.答:用含m的代數(shù)式表示線段PD的長為﹣m2+1m.②S△PBC=S△CPD+S△BPD=OB?PD=﹣m2+m=﹣(m﹣)2+.∴當m=時,S有最大值.當m=時,m2﹣4m+1=﹣.∴P(,﹣).答:△PBC的面積最大時點P的坐標為(,﹣).(1)存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形.
根據(jù)題意,點E(2,1),
∴EF=CF=2,
∴EC=2,
根據(jù)菱形的四條邊相等,
∴ME=EC=2,∴M(2,1-2)或(2,1+2)
當EM=EF=2時,M(2,1)∴點M的坐標為M1(2,1),M2(2,1﹣2),M1(2,1+2).【點睛】本題考查了二次函數(shù)與方程、幾何知識的綜合應用,解這類問題關鍵是善于將函數(shù)問題轉(zhuǎn)化為方程問題,善于利用幾何圖形的有關性質(zhì)、定理和二次函數(shù)的知識,并注意挖掘題目中的一些隱含條件.24、(1)見解析;(2)2【分析】(1)根據(jù)切線的性質(zhì)得到∠PAB=90°,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,求得PC⊥CO,根據(jù)切線的判定定理即可得到結論;(2)連接BC,先根據(jù)△ACB是等腰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通風工程包工合同范例
- 湛江勞務派遣合同范例
- 裝飾小型合同范例
- 店鋪空房轉(zhuǎn)讓合同范例
- 加氫柴油采購合同范例
- 村里攤位出租合同范例
- 《汽車潤滑油》課件
- 棋牌桌椅定制合同范例
- 杉木購銷合同范例
- 工程貨物采購合同范例
- 校園蛋糕創(chuàng)業(yè)計劃書
- 建設工程項目工程項目三方合署辦公管理標準
- 液相色譜法基本原理
- 國家開放大學電大??啤缎谭▽W(1)》題庫及答案
- 項目部管理人員通訊錄
- 人教版高一數(shù)學必修一各章節(jié)同步練習(含答案)
- 班組長績效管理課件
- 改進維持性血液透析患者貧血狀況PDCA
- 煙葉制絲操作工(中級)技能檢定考試題庫(附答案)
- 《哈佛管理制度全集-中文》
- 小學課改工作匯報
評論
0/150
提交評論