2023年重慶市榮昌區(qū)盤龍鎮(zhèn)初級中學九年級數(shù)學第一學期期末達標測試試題含解析_第1頁
2023年重慶市榮昌區(qū)盤龍鎮(zhèn)初級中學九年級數(shù)學第一學期期末達標測試試題含解析_第2頁
2023年重慶市榮昌區(qū)盤龍鎮(zhèn)初級中學九年級數(shù)學第一學期期末達標測試試題含解析_第3頁
2023年重慶市榮昌區(qū)盤龍鎮(zhèn)初級中學九年級數(shù)學第一學期期末達標測試試題含解析_第4頁
2023年重慶市榮昌區(qū)盤龍鎮(zhèn)初級中學九年級數(shù)學第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年重慶市榮昌區(qū)盤龍鎮(zhèn)初級中學九年級數(shù)學第一學期期末達標測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.42.如圖,點是矩形的邊,上的點,過點作于點,交矩形的邊于點,連接.若,,則的長的最小值為()A. B. C. D.3.某閉合并聯(lián)電路中,各支路電流與電阻成反比例,如圖表示該電路與電阻的函數(shù)關系圖象,若該電路中某導體電阻為,則導體內通過的電流為()A. B. C. D.4.如圖,AB是⊙O的直徑,點C,D在直徑AB一側的圓上(異于A,B兩點),點E在直徑AB另一側的圓上,若∠E=42°,∠A=60°,則∠B=()A.62° B.70° C.72° D.74°5.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.等邊三角形 B.平行四邊形 C.矩形 D.正五邊形6.在平面直角坐標系中,的直徑為10,若圓心為坐標原點,則點與的位置關系是()A.點在上 B.點在外 C.點在內 D.無法確定7.二次函數(shù)的圖象如圖,則一次函數(shù)的圖象經過()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限8.方程x(x﹣1)=0的解是().A.x=1 B.x=0 C.x1=1,x2=0 D.沒有實數(shù)根9.如圖,斜面AC的坡度(CD與AD的比)為1:2,AC=3米,坡頂有旗桿BC,旗桿頂端B點與A點有一條彩帶相連.若AB=10米,則旗桿BC的高度為()A.5米 B.6米 C.8米 D.(3+)米10.已知如圖1所示的四張牌,若將其中一張牌旋轉180°后得到圖1.則旋轉的牌是()A. B. C. D.11.下列圖形中為中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.拋物線 D.五角星12.下列計算正確的是()A.3x﹣2x=1 B.x2+x5=x7C.x2?x4=x6 D.(xy)4=xy4二、填空題(每題4分,共24分)13.二次函數(shù)的頂點坐標是___________.14.為測量學校旗桿的高度,小明的測量方法如下:如圖,將直角三角形硬紙板DEF的斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上.測得DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米.按此方法,請計算旗桿的高度為_____米.15.關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是__________.16.如圖所示,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉,得,則點的坐標為_________.17.已知線段,點是它的黃金分割點,,設以為邊的正方形的面積為,以為鄰邊的矩形的面積為,則與的關系是__________.18.如圖,A、B、C為⊙O上三點,且∠ACB=35°,則∠OAB的度數(shù)是______度.三、解答題(共78分)19.(8分)在精準脫貧期間,江口縣委、政府對江口教育制定了目標,為了保證2018年中考目標的實現(xiàn),對九年級進行了一次模擬測試,現(xiàn)對這次模擬測試的數(shù)學成績進行了分段統(tǒng)計,統(tǒng)計如表,共有2500名學生參加了這次模擬測試,為了解本次考試成績,從中隨機抽取了部分學生的數(shù)學成績x(得分均為整數(shù),滿分為100分)進行統(tǒng)計后得到下表,請根據(jù)表格解答下列問題:(1)隨機抽取了多少學生?(2)根據(jù)表格計算:a=;b=.分組頻數(shù)頻率x<30140.0730≤x<6032b60≤x<90a0.6290≤x300.15合計﹣1(3)設60分(含60)以上為合格,請據(jù)此估計我縣這次這次九年級數(shù)學模擬測試成績合格的學生有多少名?20.(8分)A、B兩地間的距離為15千米,甲從A地出發(fā)步行前往B地,20分鐘后,乙從B地出發(fā)騎車前往A地,且乙騎車比甲步行每小時多走10千米.乙到達A地后停留40分鐘,然后騎車按原路原速返回,結果甲、乙兩人同時到達B地.求甲從A地到B地步行所用的時間.21.(8分)體育課上,小明、小強、小華三人在足球場上練習足球傳球,足球從一個人傳到另個人記為踢一次.如果從小強開始踢,請你用列表法或畫樹狀圖法解決下列問題:(1)經過兩次踢球后,足球踢到小華處的概率是多少?(2)經過三次踢球后,足球踢回到小強處的概率是多少?22.(10分)(發(fā)現(xiàn))在解一元二次方程的時候,發(fā)現(xiàn)有一類形如x2+(m+n)x+mn=0的方程,其常數(shù)項是兩個因數(shù)的積,而它的一次項系數(shù)恰好是這兩個因數(shù)的和,則我們可以把它轉化成x2+(m+n)x+mn=(m+x)(m+n)=0(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可轉化為(x+2)(x+3)=0,即x+2=0或x+3=0,進而可求解.(歸納)若x2+px+q=(x+m)(x+n),則p=q=;(應用)(1)運用上述方法解方程x2+6x+8=0;(2)結合上述材料,并根據(jù)“兩數(shù)相乘,同號得正,異號得負“,求出一元二次不等式x2﹣2x﹣3>0的解.23.(10分)教育部基礎教育司負責人解讀“2020新中考”時強調要注重學生分析與解決問題的能力,要增強學生的創(chuàng)新精神和綜合素質.王老師想嘗試改變教學方法,將以往教會學生做題改為引導學生會學習.于是她在菱形的學習中,引導同學們解決菱形中的一個問題時,采用了以下過程(請解決王老師提出的問題):先出示問題(1):如圖1,在等邊三角形中,為上一點,為上一點,如果,連接、,、相交于點,求的度數(shù).通過學習,王老師請同學們說說自己的收獲.小明說發(fā)現(xiàn)一個結論:在這個等邊三角形中,只要滿足,則的度數(shù)就是一個定值,不會發(fā)生改變.緊接著王老師出示了問題(2):如圖2,在菱形中,,為上一點,為上一點,,連接、,、相交于點,如果,,求出菱形的邊長.問題(3):通過以上的學習請寫出你得到的啟示(一條即可).24.(10分)小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發(fā)現(xiàn):①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)(1)用含x的代數(shù)式分別表示W1,W2;(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?25.(12分)如圖,在平面直角坐標系中,將一塊等腰直角三角板ABC放在第二象限,點C坐標為(﹣1,0),點A坐標為(0,2).一次函數(shù)y=kx+b的圖象經過點B、C,反比例函數(shù)y=的圖象經過點B.(1)求一次函數(shù)和反比例函數(shù)的關系式;(2)直接寫出當x<0時,kx+b﹣<0的解集;(3)在x軸上找一點M,使得AM+BM的值最小,直接寫出點M的坐標和AM+BM的最小值.26.如圖是一種簡易臺燈的結構圖,燈座為△ABC,A、C、D在同一直線上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.求臺燈的高(即臺燈最高點E到底盤AB的距離).(結果取整,參考數(shù)據(jù)sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)

參考答案一、選擇題(每題4分,共48分)1、C【詳解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.2、A【分析】由可得∠APB=90°,根據(jù)AB是定長,由定長對定角可知P點的運動軌跡是以AB為直徑,在AB上方的半圓,取AB得中點為O,連結DO,DO與半圓的交點是DP的長為最小值時的位置,用DO減去圓的半徑即可得出最小值.【詳解】解:∵,∴∠APB=90°,∵AB=6是定長,則P點的運動軌跡是以AB為直徑,在AB上方的半圓,取AB得中點為O,連結DO,DO與半圓的交點是DP的長為最小值時的位置,如圖所示:∵,,∴,由勾股定理得:DO=5,∴,即的長的最小值為2,故選A.【點睛】本題屬于綜合難題,主要考查了直徑所對的角是圓周角的應用:由定弦對定角可得動點的軌跡是圓,發(fā)現(xiàn)定弦和定角是解題的關鍵.3、B【分析】電流I(A)與電阻R(Ω)成反比例,可設I=,根基圖象得到圖象經過點(5,2),代入解析式就得到k的值,從而能求出解析式.【詳解】解:可設,根據(jù)題意得:,解得k=10,∴.當R=4Ω時,(A).故選B.【點睛】本題主要考查的是反比例函數(shù)的應用,利用待定系數(shù)法是求解析式時常用的方法.4、C【分析】連接AC.根據(jù)圓周角定理求出∠CAB即可解決問題.【詳解】解:連接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直徑,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故選:C.【點睛】本題主要考察圓周角定理,解題關鍵是連接AC.利用圓周角定理求出∠CAB.5、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.詳解:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤;B、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形.故錯誤;C、是軸對稱圖形,又是中心對稱圖形.故正確;D、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤.故選C.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,根據(jù)定義得出圖形形狀是解決問題的關鍵.6、B【分析】求出P點到圓心的距離,即OP長,與半徑長度5作比較即可作出判斷.【詳解】解:∵,∴OP=,∵的直徑為10,∴r=5,∵OP>5,∴點P在外.故選:B.【點睛】本題考查點和直線的位置關系,當d>r時點在圓外,當d=r時,點在圓上,當d<r時,點在圓內,解題關鍵是根據(jù)點到圓心的距離和半徑的關系判斷.7、C【解析】∵拋物線的頂點在第四象限,∴﹣>1,<1.∴<1,∴一次函數(shù)的圖象經過二、三、四象限.故選C.8、C【解析】根據(jù)因式分解法解方程得到x=0或x﹣1=0,解兩個一元一次方程即可.【詳解】解:x(x﹣1)=0x=0或x﹣1=0∴x1=1,x2=0,故選C.【點睛】本題考查因式分解法解一元二次方程,熟練掌握一元二次方程的解法是關鍵.9、A【解析】試題分析:根據(jù)CD:AD=1:2,AC=3米可得:CD=3米,AD=6米,根據(jù)AB=10米,∠D=90°可得:BD==8米,則BC=BD-CD=8-3=5米.考點:直角三角形的勾股定理10、A【解析】解:觀察發(fā)現(xiàn),只有是中心對稱圖形,∴旋轉的牌是.故選A.11、B【分析】根據(jù)中心對稱圖形的概念求解.【詳解】A、等邊三角形不是中心對稱圖形,故本選項錯誤;B、平行四邊形是中心對稱圖形,故本選項正確;C、拋物線不是中心對稱圖形,故本選項錯誤;D、五角星不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.12、C【分析】分別根據(jù)合并同類項的法則,同底數(shù)冪的乘法法則,冪的乘方與積的乘方逐一判斷即可.【詳解】解:3x﹣2x=x,故選項A不合題意;x2與x5不是同類項,故不能合并,故選項B不合題意;x2?x4=x6,正確,故選項C符合題意;,故選項D不合題意.故選:C.【點睛】本題主要考查了合并同類項,同底數(shù)冪的乘法以及冪的乘方與積的乘方,熟練掌握運算法則是解答本題的關鍵.二、填空題(每題4分,共24分)13、【分析】因為頂點式y(tǒng)=a(x-h)2+k,其頂點坐標是(h,k),直接求二次函數(shù)的頂點坐標即可.【詳解】∵是頂點式,∴頂點坐標是.故答案為:【點睛】本題考查了二次函數(shù)的性質,熟練掌握頂點式是解題的關鍵.14、11.1【解析】根據(jù)題意證出△DEF∽△DCA,進而利用相似三角形的性質得出AC的長,即可得出答案.【詳解】由題意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,則,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗桿的高度為11.1米.故答案為11.1.【點睛】本題考查了相似三角形的應用;由三角形相似得出對應邊成比例是解題的關鍵.15、【分析】根據(jù)根的判別式即可求出答案;【詳解】解:由題意可知:解得:故答案為:【點睛】本題考查一元二次方程根的判別式,解題的關鍵是熟練掌握一元二次方程根的判別式并應用.16、【分析】把點A繞點O順時針旋轉90°得到點A′,看其坐標即可.【詳解】解:由圖知A點的坐標為(-3,1),根據(jù)旋轉中心O,旋轉方向順時針,旋轉角度90°,畫圖,由圖中可以看出,點A′的坐標為(1,3),

故答案為A′(1,3).【點睛】本題考查點的旋轉坐標的求法;得到關鍵點旋轉后的位置是解題的關鍵.17、【分析】根據(jù)黃金分割比得出AP,PB的長度,計算出與即可比較大小.【詳解】解:∵點是AB的黃金分割點,,∴,設AB=2,則,∴∴故答案為:.【點睛】本題考查了黃金分割比的應用,熟知黃金分割比是解題的關鍵.18、1【分析】根據(jù)題意易得∠AOB=70°,然后由等腰三角形的性質及三角形內角和可求解.【詳解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴;故答案為1.【點睛】本題主要考查圓周角定理,熟練掌握圓周角定理是解題的關鍵.三、解答題(共78分)19、(1)200名;(2)124,0.16;(3)1925名【分析】(1)由題意根據(jù)頻數(shù)分布表中的數(shù)據(jù),可以計算出隨機抽取的學生人數(shù);(2)由題意根據(jù)(1)中的數(shù)據(jù)和頻數(shù)分布表中的數(shù)據(jù),可以計算出a和b的值;(3)根據(jù)頻數(shù)分布表中的數(shù)據(jù),即可計算出我縣這次這次九年級數(shù)學模擬測試成績合格的學生有多少名.【詳解】解:(1)14÷0.07=200(名),即隨機抽取了200名學生;(2)a=200×0.62=124,b=32÷200=0.16,故答案為:124,0.16;(3)2500×(0.62+0.15)=2500×0.77=1925(名),答:我縣這次這次九年級數(shù)學模擬測試成績合格的學生有1925名.【點睛】本題考查頻數(shù)分布表和用樣本估計總體,解答本題的關鍵是明確題意并求出相應的數(shù)據(jù).20、3小時.【分析】本題的等量關系是路程=速度×時間.本題可根據(jù)乙從B到A然后再到B用的時間=甲從A到B用的時間-20分鐘-40分鐘來列方程.【詳解】解:設甲從A地到B地步行所用時間為x小時,由題意得:化簡得:2x2-5x-3=0,解得:x1=3,x2=-,經檢驗知x=3符合題意,∴x=3,∴甲從A地到B地步行所用時間為3小時.【點睛】本題考查分式方程的應用,注意分式方程結果要檢驗.21、(1);(2).【分析】(1)根據(jù)畫列表法或樹狀圖求概率;(2)根據(jù)畫列表法或樹狀圖求概率【詳解】解:(1)畫樹狀圖如下圖所示:由樹狀圖可知,(經過兩次踢球后,足球踢到小華處).(2)畫樹狀圖如下圖所示:由樹狀圖可知,(經過三次踢球后,足球踢回到小強處).【點睛】本題考查了根據(jù)畫樹狀圖求概率22、歸納:m+n,m;應用(1):x1=﹣2,x2=4;(2)x>3或x﹣1【分析】歸納:根據(jù)題意給出的方法即可求出答案.應用:(1)根據(jù)題意給出的方法即可求出答案;(2)根據(jù)題意給出的方法即可求出答案;【詳解】解:歸納:故答案為:m+n,m;應用:(1)x2+6x+8=0,∴(x+2)(x+4)=0∴x+2=0,x+4=0∴x1=﹣2,x2=4;(2)∵x2﹣2x﹣3>0∴(x﹣3)(x+1)>0∴或解得:x>3或x﹣1【點睛】本題考查了一元二次方程,一元二次不等式的解及題目所給信息的總結歸納能力23、(1);(2);(3)答案不唯一,合理即可【解析】問題(1)根據(jù)是等邊三角形證明,得出,再根據(jù)三角形外角性質即可得證;問題(2)作交于點,根據(jù)四邊形是菱形得出,在中利用三角函數(shù)即可求得,,最后根據(jù)勾股定理得出答案.問題(3)從個人的積累和心得寫一句話即可.【詳解】問題(1)∵是等邊三角形,∴,.∵,∴,∴.∵,∴,問題(2)如圖,作交于點,∵四邊形是菱形,∴,,∴是等邊三角形,∴.由(1)可知,在中,,即,∴,,即,∴.在中,由勾股定理可得,∴,∴,∴菱形的邊長為.問題(3)如平時應該注意基本圖形的積累,在學習過程中做個有心人等,言之有理即可.【點睛】本題考查了菱形的性質、等邊三角形的判定、勾股定理及三角函數(shù),綜合性比較強,需要添加合適的輔助線對解決問題做鋪墊.24、(1)W1=-2x2+60x+8000,W2=-19x+950;(2)當x=10時,W總最大為9160元.【解析】(1)第二期培植的盆景比第一期增加x盆,則第二期培植盆景(50+x)盆,花卉(50-x)盆,根據(jù)盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元,②花卉的平均每盆利潤始終不變,即可得到利潤W1,W2與x的關系式;(2)由W總=W1+W2可得關于x的二次函數(shù),利用二次函數(shù)的性質即可得.【詳解】(1)第二期培植的盆景比第一期增加x盆,則第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由題意得W1=(50+x)(160-2x)=-2x2+60x+8000,W2=19(50-x)=-19x+950;(2)W總=W1+W2=-2x2+60x+8000+(-19x+950)=-2x2+41x+8950,∵-2<0,=10.25,故當x=10時,W總最大,W總最大=-2×102+41×10+8950=9160.【點睛】本題考查了二次函數(shù)的應用,弄清題意,找準數(shù)量關系列出函數(shù)解析式是解題的關鍵.25、(1)y=﹣x﹣,y=﹣;(2)﹣3<x<0;(3)點M的坐標為(﹣2,0),AM+BM的最小值為3.【分析】(1)過點B作BF⊥x軸于點F,由△AOC≌△CFB求得點B的坐標,利用待定系數(shù)法可求出一次函數(shù)和反比例函數(shù)的關系式;(2)當x<0時,求出一次函數(shù)值y=kx+b小于反比例函數(shù)y=的x的取值范圍,結合圖形即可直接寫出答案.(3)根據(jù)軸對稱的性質,找到點A關于x的對稱點A′,連接BA′,則BA′與x軸的交點即為點M的位置,求出直線BA′的解析式,可得出點M的坐標,根據(jù)B、A′的坐標可求出AM+BM的最小值.【詳解】解:(1)過點B作BF⊥x軸于點F,∵點C坐標為(﹣1,0),點A坐標為(0,2).∴OA=2,OC=1,∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO,在△AOC和△CFB中∴△AOC≌△CFB(AAS),∴FC=OA=2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論