2024屆北京師大附中數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第1頁
2024屆北京師大附中數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第2頁
2024屆北京師大附中數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第3頁
2024屆北京師大附中數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第4頁
2024屆北京師大附中數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆北京師大附中數(shù)學高一第二學期期末學業(yè)水平測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設等差數(shù)列{an}的前n項的和Sn,若a2+a8=6,則S9=()A.3 B.6 C.27 D.542.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.3.若三個球的半徑的比是1:2:3,則其中最大的一個球的體積是另兩個球的體積之和的()倍.A.95 B.2 C.524.已知曲線C的方程為x2+y2=2(x+|y|),直線x=my+4與曲線C有兩個交點,則m的取值范圍是()A.m>1或m<﹣1 B.m>7或m<﹣7C.m>7或m<﹣1 D.m>1或m<﹣75.名小學生的身高(單位:cm)分成了甲、乙兩組數(shù)據(jù),甲組:115,122,105,111,109;乙組:125,132,115,121,119.兩組數(shù)據(jù)中相等的數(shù)字特征是()A.中位數(shù)、極差 B.平均數(shù)、方差C.方差、極差 D.極差、平均數(shù)6.湖南衛(wèi)視《爸爸去哪兒》節(jié)目組為熱心觀眾給予獎勵,要從2014名小觀眾中抽取50名幸運小觀眾.先用簡單隨機抽樣從2014人中剔除14人,剩下的2000人再按系統(tǒng)抽樣方法抽取50人,則在2014人中,每個人被抽取的可能性()A.均不相等 B.不全相等C.都相等,且為 D.都相等,且為7.已知是第三象限的角,若,則A. B. C. D.8.已知,且,,則()A. B. C. D.9.設偶函數(shù)定義在上,其導數(shù)為,當時,,則不等式的解集為()A. B.C. D.10.在中,,,,則的面積是()A. B. C.或 D.或二、填空題:本大題共6小題,每小題5分,共30分。11.設等差數(shù)列的前項和為,若,,則______.12.古希臘數(shù)學家阿波羅尼斯在他的巨著《圓錐曲線論》中有一個著名的幾何問題:在平面上給定兩點,,動點滿足(其中和是正常數(shù),且),則的軌跡是一個圓,這個圓稱之為“阿波羅尼斯圓”,該圓的半徑為__________.13.隨機抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進行問卷調查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.14.已知正方體的棱長為,點、分別為、的中點,則點到平面的距離為______.15.已知為等差數(shù)列,,前n項和取得最大值時n的值為___________.16.等比數(shù)列的前項和為,若,,成等差數(shù)列,則其公比為_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐P~ABCD中,底面ABCD為矩形,E,F(xiàn)分別為AD,PB的中點,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求證:EF∥平面PCD;(2)設G為AB中點,求證:平面EFG⊥平面PCD.18.已知是第三象限角,.(1)化簡;(2)若,求的值.19.在平面直角坐標系中,為坐標原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.20.設等差數(shù)列滿足.(1)求數(shù)列的通項公式;(2)若成等比數(shù)列,求數(shù)列的前項和.21.在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;(3)設,是圓上任意兩點,點關于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

利用等差數(shù)列的性質和求和公式,即可求得的值,得到答案.【題目詳解】由題意,等差數(shù)列的前n項的和,由,根據(jù)等差數(shù)列的性質,可得,所以,故選:C.【題目點撥】本題主要考查了等差數(shù)列的性質,以及等差數(shù)列的前n項和公式的應用,著重考查了推理與運算能力,屬于基礎題.2、B【解題分析】

試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.3、D【解題分析】

設最小球的半徑為R,根據(jù)比例關系即可得到另外兩個球的半徑,再利用球的體積公式表示出三個球的體積,即可得到結論?!绢}目詳解】設最小球的半徑為R,由三個球的半徑的比是1:2:3,可得另外兩個球的半徑分別為2R,3R;∴最小球的體積V1=43π∴V故答案選D【題目點撥】本題主要考查球體積的計算公式,屬于基礎題。4、A【解題分析】

先畫出曲線的圖象,再求出直線與相切時的,最后結合圖象可得的取值范圍,得到答案.【題目詳解】如圖所示,曲線的圖象是兩個圓的一部分,由圖可知:當直線與曲線相切時,只有一個交點,此時,結合圖象可得或.故選:A.【題目點撥】本題主要考查了直線與圓的位置關系的應用,其中解答中熟練應有直線與圓的位置關系,合理結合圖象求解是解答的關鍵,著重考查了數(shù)形結合思想,以及推理與運算能力,屬于中檔試題.5、C【解題分析】

將甲、乙兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、方差全部算出來,并進行比較,可得出答案.【題目詳解】甲組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,乙組數(shù)據(jù)由小到大排列依次為:、、、、,極差為,平均數(shù)為中位數(shù)為,方差為,因此,兩組數(shù)據(jù)相等的是極差和方差,故選C.【題目點撥】本題考查樣本的數(shù)字特征,理解極差、平均數(shù)、中位數(shù)、方差的定義并利用相關公式進行計算是解本題的關鍵,考查計算能力,屬于基礎題.6、C【解題分析】由題意可得,先用簡單隨機抽樣的方法從2014人中剔除14人,則剩下的再分組,按系統(tǒng)抽樣抽取.在剔除過程中,每個個體被剔除的機會相等,所以每個個體被抽到的機會相等,均為故選C7、D【解題分析】

根據(jù)是第三象限的角得,利用同角三角函數(shù)的基本關系,求得的值.【題目詳解】因為是第三象限的角,所以,因為,所以解得:,故選D.【題目點撥】本題考查余弦函數(shù)在第三象限的符號及同角三角函數(shù)的基本關系,即已知值,求的值.8、C【解題分析】

根據(jù)同角三角函數(shù)的基本關系及兩角和差的正弦公式計算可得.【題目詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【題目點撥】本題考查同角三角函數(shù)的基本關系,兩角和差的正弦公式,屬于中檔題.9、C【解題分析】構造函數(shù),則,所以當時,,單調遞減,又在定義域內為偶函數(shù),所以在區(qū)間單調遞增,單調遞減,又等價于,所以解集為.故選C.點睛:本題考查導數(shù)的構造法應用.本題中,由條件構造函數(shù),結合函數(shù)性質,可得抽象函數(shù)在區(qū)間單調遞增,單調遞減,結合函數(shù)草圖,即可解得不等式解集.10、C【解題分析】

先根據(jù)正弦定理求出角,從而求出角,再根據(jù)三角形的面積公式進行求解即可.【題目詳解】解:由,,,根據(jù)正弦定理得:,為三角形的內角,或,或在中,由,,或則面積或.故選C.【題目點撥】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解題分析】

將和用首項和公差表示,解方程組,求出首項和公式,利用公式求解.【題目詳解】設該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【題目點撥】本題考查由基本量計算等差數(shù)列的通項公式以及前項和,屬基礎題.12、【解題分析】

設,由動點滿足(其中和是正常數(shù),且),可得,化簡整理可得.【題目詳解】設,由動點滿足(其中和是正常數(shù),且),所以,化簡得,即,所以該圓半徑故該圓的半徑為.【題目點撥】本題考查圓方程的標準形式和兩點距離公式,難點主要在于計算.13、3【解題分析】

根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案.【題目詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,在[50,60)年齡段抽取的人數(shù)為.【題目點撥】本題主要考查了頻率分布直方圖的應用,其中解答中熟記頻率分布直方圖的性質,以及頻率分布直方圖中概率的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、【解題分析】

作出圖形,取的中點,連接,證明平面,可知點平面的距離等于點到平面的距離,然后利用等體積法計算出點到平面的距離,即為所求.【題目詳解】如下圖所示,取的中點,連接,在正方體中,且,、分別為、的中點,且,所以,四邊形為平行四邊形,且,又,,平面,平面,平面,則點平面的距離等于點到平面的距離,的面積為,在正方體中,平面,且平面,,易知三棱錐的體積為.的面積為.設點到平面的距離為,則,.故答案為:.【題目點撥】本題考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意等體積法的合理運用.15、20【解題分析】

先由條件求出,算出,然后利用二次函數(shù)的知識求出即可【題目詳解】設的公差為,由題意得即,①即,②由①②聯(lián)立得所以故當時,取得最大值400故答案為:20【題目點撥】等差數(shù)列的是關于的二次函數(shù),但要注意只能取正整數(shù).16、【解題分析】試題分析:、、成等差數(shù)列考點:1.等差數(shù)列性質;2.等比數(shù)列通項公式三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解題分析】

(1)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(2)通過證明,證得平面,由此證得平面,從而證得平面平面.【題目詳解】(1)證明:取PC的中點H,連接FH則FH∥BC,F(xiàn)H,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四邊形EFHD為平行四邊形,∴EF∥DH,又DH?平面PCD,EF?平面PCD,∴EF∥平面PCD;(2)證明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂線定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【題目點撥】本小題主要考查線面平行的證明,考查面面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2).【解題分析】

(1)由誘導公式變形即得;(2)同樣用誘導公式化簡后,利用平方關系求值.【題目詳解】(1);(2),,又是第三象限角,∴,∴.【題目點撥】本題考查誘導公式,考查同角間的三角函數(shù)關系.在用平方關系示三角函數(shù)值時,要注意確定角的范圍.19、(1)或;(2)當時的值域為.時的值域為.【解題分析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結合向量與向量共線,常數(shù),建立的表達式,代入,對分類討論,綜合三角函數(shù)和二次函數(shù)的圖象與性質,即可求出值域.詳解:(1),∵,且,∴,,解得,時,;時,.∴向量或.(2),∵向量與向量共線,常數(shù),∴,∴.①當即時,當時,取得最大值,時,取得最小值,此時函數(shù)的值域為.②當即時,當時,取得最大值,時,取得最小值,此時函數(shù)的值域為.綜上所述,當時的值域為.時的值域為.點睛:本題考查了向量的坐標運算、向量垂直和共線的定理、模的計算、三角函數(shù)的值域等問題,考查了分類討論方法、推理與計算能力.20、(1)或;(2).【解題分析】

(1)利用等差數(shù)列性質先求出的值,進而得到公差,最后寫出數(shù)列的通項公式;(2)依照題意找出(1)中符合條件的數(shù)列,再用等差數(shù)列前項和公式求出數(shù)列的前項和.【題目詳解】(1)因為等差數(shù)列,且,所以所以,又,所以,于是或設等差數(shù)列的公差為,則或,的通項公式為:或;(2)因為成等比數(shù)列,所以所以數(shù)列的前項和.【題目點撥】本題主要考查等差數(shù)列的性質、通項公式的求法以及等差數(shù)列前項和公式,注意分類討論思想的應用.21、(1);(2);(3)見解析【解題分析】

(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結合勾股定理,可以求出圓的半徑,進而可以求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論