2024屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第1頁(yè)
2024屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第2頁(yè)
2024屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第3頁(yè)
2024屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第4頁(yè)
2024屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一下期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在的二面角內(nèi),放置一個(gè)半徑為3的球,該球切二面角的兩個(gè)半平面于A,B兩點(diǎn),那么這兩個(gè)切點(diǎn)在球面上的最短距離為()A. B. C. D.2.在等差數(shù)列an中,a1=1,aA.13 B.16 C.32 D.353.若關(guān)于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.4.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B. C. D.5.以下有四個(gè)說(shuō)法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長(zhǎng)為的扇形,其面積的最大值為;其中說(shuō)法正確的個(gè)數(shù)是()A. B.C. D.6.設(shè)函數(shù)的最大值為,最小值為,則與滿足的關(guān)系是()A. B.C. D.7.過(guò)曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為()A. B. C. D.8.已知平面平面,,點(diǎn),,直線,直線,直線,,則下列四種位置關(guān)系中,不一定成立的是()A. B. C. D.9.甲、乙兩人在相同條件下,射擊5次,命中環(huán)數(shù)如下:甲9.89.910.11010.2乙9.410.310.89.79.8根據(jù)以上數(shù)據(jù)估計(jì)()A.甲比乙的射擊技術(shù)穩(wěn)定 B.乙.比甲的射擊技術(shù)穩(wěn)定C.兩人沒有區(qū)別 D.兩人區(qū)別不大10.過(guò)點(diǎn)且與直線平行的直線方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等比數(shù)列,若,,則公比________.12.如圖,兩個(gè)正方形,邊長(zhǎng)為2,.將繞旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過(guò)程中,與平面的距離最大值為______.13.在中,角所對(duì)邊長(zhǎng)分別為,若,則的最小值為__________.14.實(shí)數(shù)2和8的等比中項(xiàng)是__________.15.已知實(shí)數(shù)滿足條件,則的最大值是________.16.在中,角的對(duì)邊分別為,且面積為,則面積的最大值為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知.(1)若三點(diǎn)共線,求的關(guān)系;(2)若,求點(diǎn)的坐標(biāo).18.交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫€(gè)數(shù);(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.19.在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,a=7,b=8,.(1)求邊AB的長(zhǎng);(2)求△ABC的面積.20.已知公差不為的等差數(shù)列滿足.若,,成等比數(shù)列.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.設(shè),,.(1)若,求實(shí)數(shù)的值;(2)若,求實(shí)數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】

根據(jù)題意,作出截面圖,計(jì)算弧長(zhǎng)即可.【題目詳解】根據(jù)題意,作出該球過(guò)球心且經(jīng)過(guò)A、B的截面圖如下所示:由題可知:則,故滿足題意的最短距離為弧長(zhǎng)BA,在該弧所在的扇形中,弧長(zhǎng).故選:A.【題目點(diǎn)撥】本題考查弧長(zhǎng)的計(jì)算公式,二面角的定義,屬綜合基礎(chǔ)題.2、D【解題分析】

直接利用等差數(shù)列的前n項(xiàng)和公式求解.【題目詳解】數(shù)列an的前5項(xiàng)和為5故選:D【題目點(diǎn)撥】本題主要考查等差數(shù)列的前n項(xiàng)和的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.3、A【解題分析】

利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【題目詳解】關(guān)于的不等式在區(qū)間上有解在上有解即在上成立,設(shè)函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域?yàn)橐谏嫌薪猓瑒t即的取值范圍是故選【題目點(diǎn)撥】本題是一道關(guān)于一元二次不等式的題目,解題的關(guān)鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎(chǔ)題.4、A【解題分析】

判斷每個(gè)函數(shù)在上的單調(diào)性即可.【題目詳解】解:在上單調(diào)遞增,,和在上都是單調(diào)遞減.故選:A.【題目點(diǎn)撥】考查冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和反比例函數(shù)的單調(diào)性.5、C【解題分析】

設(shè)、為對(duì)立事件可得出命題①的正誤;利用大邊對(duì)大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個(gè)數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設(shè)扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【題目詳解】對(duì)于命題①,若、為對(duì)立事件,則、互斥,則,命題①錯(cuò)誤;對(duì)于命題②,由大邊對(duì)大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對(duì)于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對(duì)于命題④,設(shè)扇形的半徑為,則扇形的弧長(zhǎng)為,扇形的面積為,由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,所以,扇形面積的最大值為,命題④錯(cuò)誤.故選C.【題目點(diǎn)撥】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關(guān)系、公約數(shù)以及扇形面積的最值,判斷時(shí)要結(jié)合這些知識(shí)點(diǎn)的基本概念來(lái)理解,考查推理能力,屬于中等題.6、B【解題分析】

將函數(shù)化為一個(gè)常數(shù)函數(shù)與一個(gè)奇函數(shù)的和,再利用奇函數(shù)的對(duì)稱性可得答案.【題目詳解】因?yàn)?,令,則,所以為奇函數(shù),所以,所以,故選:B【題目點(diǎn)撥】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.7、C【解題分析】

設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時(shí),∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【題目詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對(duì)稱,且直線AB⊥x軸,設(shè)左焦點(diǎn)F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時(shí),∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【題目點(diǎn)撥】本題考查雙曲線的簡(jiǎn)單性質(zhì),分析得到當(dāng)點(diǎn)C在坐標(biāo)原點(diǎn)時(shí),∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.8、D【解題分析】

平面外的一條直線平行平面內(nèi)的一條直線則這條直線平行平面,若兩平面垂直則一個(gè)平面內(nèi)垂直于交線的直線垂直另一個(gè)平面,主要依據(jù)這兩個(gè)定理進(jìn)行判斷即可得到答案.【題目詳解】如圖所示:由于,,,所以,又因?yàn)?,所以,故A正確,由于,,所以,故B正確,由于,,在外,所以,故C正確;對(duì)于D,雖然,當(dāng)不一定在平面內(nèi),故它可以與平面相交、平行,不一定垂直,所以D不正確;故答案選D【題目點(diǎn)撥】本題考查線面平行、線面垂直、面面垂直的判斷以及性質(zhì)應(yīng)用,要求熟練掌握定理是解題的關(guān)鍵.9、A【解題分析】

先計(jì)算甲、乙兩人射擊5次,命中環(huán)數(shù)的平均數(shù),再計(jì)算出各自的方差,根據(jù)方差的數(shù)值的比較,得出正確的答案.【題目詳解】甲、乙兩人射擊5次,命中環(huán)數(shù)的平均數(shù)分別為:,甲、乙兩人射擊5次,命中環(huán)數(shù)的方差分別為:,,因?yàn)?,所以甲比乙的射擊技術(shù)穩(wěn)定,故本題選A.【題目點(diǎn)撥】本題考查了用方差解決實(shí)際問(wèn)題的能力,考查了方差的統(tǒng)計(jì)學(xué)意義.10、D【解題分析】

先由題意設(shè)所求直線為:,再由直線過(guò)點(diǎn),即可求出結(jié)果.【題目詳解】因?yàn)樗笾本€與直線平行,因此,可設(shè)所求直線為:,又所求直線過(guò)點(diǎn),所以,解得,所求直線方程為:.故選:D【題目點(diǎn)撥】本題主要考查求直線的方程,熟記直線方程的常見形式即可,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用等比數(shù)列的通項(xiàng)公式即可得出.【題目詳解】∵數(shù)列是等比數(shù)列,若,,則,解得,即.故答案為:【題目點(diǎn)撥】本題考查了等比數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.12、【解題分析】

繞旋轉(zhuǎn)一周得到的幾何體是圓錐,點(diǎn)的軌跡是圓.過(guò)作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像,根據(jù)圖像判斷出圓的下頂點(diǎn)距離平面的距離最大,解三角形求得這個(gè)距離的最大值.【題目詳解】繞旋轉(zhuǎn)一周得到的幾何體是圓錐,故點(diǎn)的軌跡是圓.過(guò)作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像如下圖所示,根據(jù)圖像作法可知,當(dāng)位于圓心的正下方點(diǎn)位置時(shí),到平面的距離最大.在平面內(nèi),過(guò)作,交于.在中,,.所以①.其中,,所以①可化為.故答案為:【題目點(diǎn)撥】本小題主要考查旋轉(zhuǎn)體的概念,考查空間點(diǎn)到面的距離的最大值的求法,考查空間想象能力和運(yùn)算能力,屬于中檔題.13、【解題分析】

根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【題目詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時(shí)取等號(hào)故故的最小值為故答案為:【題目點(diǎn)撥】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.14、【解題分析】所求的等比中項(xiàng)為:.15、8【解題分析】

畫出滿足約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【題目詳解】實(shí)數(shù),滿足條件的可行域如下圖所示:將目標(biāo)函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過(guò)點(diǎn)時(shí)截距最大,,故答案為:8.【題目點(diǎn)撥】本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,解題關(guān)鍵是明確目標(biāo)函數(shù)的幾何意義.16、【解題分析】

利用三角形面積構(gòu)造方程可求得,可知,從而得到;根據(jù)余弦定理,結(jié)合基本不等式可求得,代入三角形面積公式可求得最大值.【題目詳解】,由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號(hào))本題正確結(jié)果:【題目點(diǎn)撥】本題考查解三角形問(wèn)題中的三角形面積的最值問(wèn)題的求解;求解最值問(wèn)題的關(guān)鍵是能夠通過(guò)余弦定理構(gòu)造等量關(guān)系,進(jìn)而利用基本不等式求得邊長(zhǎng)之積的最值,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)a+b=2;(2)(5,-3).【解題分析】

(1)求出和的坐標(biāo),然后根據(jù)兩向量共線的等價(jià)條件可得所求關(guān)系式.(2)求出的坐標(biāo),根據(jù)得到關(guān)于的方程組,解方程組可得所求點(diǎn)的坐標(biāo).【題目詳解】由題意知,,.(1)∵三點(diǎn)共線,∴∥,∴,∴.(2)∵,∴,∴,解得,∴點(diǎn)的坐標(biāo)為.【題目點(diǎn)撥】本題考查向量共線的應(yīng)用,解題的關(guān)鍵是把共線表示為向量的坐標(biāo)的形式,進(jìn)而轉(zhuǎn)化為數(shù)的運(yùn)算的問(wèn)題,屬于基礎(chǔ)題.18、(1)輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫€(gè)數(shù)分別為6,9,3;(2)從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個(gè)數(shù)為2,3,1;(3)【解題分析】

(1)根據(jù)在頻率分布直方圖中,小長(zhǎng)方形的面積表示各組的頻率,可以求出頻率,再根據(jù)頻數(shù)等于頻率乘以樣本容量,求出頻數(shù);(2)根據(jù)(1)求出擁堵路段的個(gè)數(shù),求出每層之間的占有比例,然后求出每層的個(gè)數(shù);(3)先求出從(2)中抽取的6個(gè)路段中任取2個(gè),有多少種可能情況,然后求出至少有1個(gè)路段為輕度擁堵有多少種可能情況,根據(jù)古典概型概率公式求出.【題目詳解】(1)由頻率分布直方圖得,這20個(gè)交通路段中,輕度擁堵的路段有(0.1+0.2)×1×20=6(個(gè)),中度擁堵的路段有(0.25+0.2)×1×20=9(個(gè)),嚴(yán)重?fù)矶碌穆范斡?0.1+0.05)×1×20=3(個(gè)).(2)由(1)知,擁堵路段共有6+9+3=18(個(gè)),按分層抽樣,從18個(gè)路段抽取6個(gè),則抽取的三個(gè)級(jí)別路段的個(gè)數(shù)分別為,,,即從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個(gè)數(shù)為2,3,1.(3)記抽取的2個(gè)輕度擁堵路段為,,抽取的3個(gè)中度擁堵路段為,,,抽取的1個(gè)嚴(yán)重?fù)矶侣范螢?,則從這6個(gè)路段中抽取2個(gè)路段的所有可能情況為:,共15種,其中至少有1個(gè)路段為輕度擁堵的情況為:,共9種.所以所抽取的2個(gè)路段中至少有1個(gè)路段為輕度擁堵的概率為.【題目點(diǎn)撥】本題考查了頻率直方圖的應(yīng)用、分層抽樣、古典概型概率的求法.解決本題的關(guān)鍵是對(duì)頻率直方圖所表示的意義要了解,分層抽樣的原則要知道,要能識(shí)別古典概型.19、(1)AB的長(zhǎng)為1.(2)6.【解題分析】

(1)利用余弦定理解方程,解方程求得的長(zhǎng).(2)根據(jù)的值,求得的值,由三角形面積公式,求得三角形的面積.【題目詳解】(1)∵a=7,b=8,.∴由余弦定理b2=a2+c2﹣2accosB,可得:64=49+c2﹣2,可得:c2+2c﹣15=0,∴解得:c=1,或﹣5(舍去),可得:AB的長(zhǎng)為1.(2)∵,B∈(0,π),∴sinB,又a=7,c=1,∴S△ABCacsinB6.【題目點(diǎn)撥】本小題主要考查余弦定理解三角形,考查三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系式,考查運(yùn)算求解能力,屬于基礎(chǔ)題.20、(1);(2).【解題分析】

(1)根據(jù)對(duì)比中項(xiàng)的性質(zhì)即可得出一個(gè)式子,再

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論