版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省大冶市一中2024屆數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.102.在銳角三角形中,,,分別為內(nèi)角,,的對(duì)邊,已知,,,則的面積為()A. B. C. D.3.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若對(duì)任意的均有成立,則的最小值為()A. B. C. D.4.過兩點(diǎn)A(4,y),B(2,-3)的直線的傾斜角是135°,則y等于()A.1 B.5 C.-1 D.-55.已知a,b,c為實(shí)數(shù),則下列結(jié)論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc26.若直線與圓交于兩點(diǎn),關(guān)于直線對(duì)稱,則實(shí)數(shù)的值為()A. B. C. D.7.等比數(shù)列的前項(xiàng)和為,,且成等差數(shù)列,則等于()A. B. C. D.8.已知關(guān)于的不等式的解集為,則的值為()A.4 B.5 C.7 D.99.如圖,在正四棱錐中,,側(cè)面積為,則它的體積為()A.4 B.8 C. D.10.“”是“直線:與直線:垂直”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列的前項(xiàng)和為,,且(),記,則的值是________.12.己知中,角所対的辻分別是.若,=,,則=______.13.已知曲線與直線交于A,B兩點(diǎn),若直線OA,OB的傾斜角分別為、,則__________14.在中,,是邊上一點(diǎn),且滿足,若,則_________.15.如果函數(shù)的圖象關(guān)于直線對(duì)稱,那么該函數(shù)在上的最小值為_______________.16.等比數(shù)列前n項(xiàng)和為,若,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點(diǎn),是圓周上一點(diǎn),且,,.(1)求異面直線與所成角的余弦值;(2)設(shè)點(diǎn)是線段上的點(diǎn),且滿足,若直線平面,求實(shí)數(shù)的值.18.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.19.如圖,在三棱柱中,為正三角形,為的中點(diǎn),,,.(1)證明:平;(2)證明:平面平面.20.在中,角A,B,C的對(duì)邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.21.從半徑為1的半圓出發(fā),以此向內(nèi)、向外連續(xù)作半圓,且后一個(gè)半圓的直徑為前一個(gè)半圓的半徑,如此下去,可得到無數(shù)個(gè)半圓.(1)求出所有這些半圓圍城的封閉圖形的周長(zhǎng);(2)求出所有這些半圓圍城的封閉圖形的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】
將,分別用和的形式表示,然后求解出和的值即可表示.【題目詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則由,,得解得,,所以.故選C.【題目點(diǎn)撥】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項(xiàng)的值,可通過構(gòu)建和的方程組求通項(xiàng)公式.2、D【解題分析】由結(jié)合題意可得:,故,△ABC為銳角三角形,則,由題意結(jié)合三角函數(shù)的性質(zhì)有:,則:,即:,則,由正弦定理有:,故.本題選擇D選項(xiàng).點(diǎn)睛:在解決三角形問題中,求解角度值一般應(yīng)用余弦定理,因?yàn)橛嘞叶ɡ碓趦?nèi)具有單調(diào)性,求解面積常用面積公式,因?yàn)楣街屑扔羞呌钟薪?,容易和正弦定理、余弦定理?lián)系起來.3、D【解題分析】
直接應(yīng)用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質(zhì),求出函數(shù)的解析式,對(duì)任意的均有,說明函數(shù)在時(shí),取得最大值,得出的表達(dá)式,結(jié)合已知選出正確答案.【題目詳解】因?yàn)楹瘮?shù)的圖象向左平移個(gè)單位長(zhǎng)度,所以得到函數(shù),再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,所以,對(duì)任意的均有成立,所以在時(shí),取得最大值,所以有而,所以的最小值為.【題目點(diǎn)撥】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質(zhì),考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關(guān)鍵.4、D【解題分析】∵過兩點(diǎn)A(4,y),B(2,-3)的直線的傾斜角是135°,∴,解得。選D。5、C【解題分析】
本題可根據(jù)不等式的性質(zhì)以及運(yùn)用特殊值法進(jìn)行代入排除即可得到正確結(jié)果.【題目詳解】由題意,可知:對(duì)于A中,可設(shè),很明顯滿足,但,所以選項(xiàng)A不正確;對(duì)于B中,因?yàn)椴恢赖恼?fù)情況,所以不能直接得出,所以選項(xiàng)B不正確;對(duì)于C中,因?yàn)椋?,所以,所以選項(xiàng)C正確;對(duì)于D中,若,則不能得到,所以選項(xiàng)D不正確.故選:C.【題目點(diǎn)撥】本題主要考查了不等式性質(zhì)的應(yīng)用以及特殊值法的應(yīng)用,著重考查了推理能力,屬于基礎(chǔ)題.6、A【解題分析】
由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【題目詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【題目點(diǎn)撥】本題給出直線與圓相交,且兩個(gè)交點(diǎn)關(guān)于已知直線對(duì)稱,求參數(shù)的值.著重考查了直線與圓的位置關(guān)系等知識(shí),屬于基礎(chǔ)題.7、A【解題分析】
根據(jù)等差中項(xiàng)的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進(jìn)而求得的值.【題目詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【題目點(diǎn)撥】本小題主要考查等差中項(xiàng)的性質(zhì),考查等比數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.8、D【解題分析】
將原不等式化簡(jiǎn)后,根據(jù)不等式的解集列方程組,求得的值,進(jìn)而求得的值.【題目詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【題目點(diǎn)撥】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎(chǔ)題.9、A【解題分析】
連交于,連,根據(jù)正四棱錐的定義可得平面,取中點(diǎn),連,則由側(cè)面積和底面邊長(zhǎng),求出側(cè)面等腰三角形的高,在中,求出,即可求解.【題目詳解】連交于,連,取中點(diǎn),連因?yàn)檎睦忮F,則平面,,側(cè)面積,在中,,.故選:A.【題目點(diǎn)撥】本題考查正四棱錐結(jié)構(gòu)特征、體積和表面積,屬于基礎(chǔ)題.10、A【解題分析】試題分析:由題意得,直線與直線垂直,則,解得或,所以“”是“直線與直線垂直”的充分不必要條件,故選A.考點(diǎn):兩條直線的位置關(guān)系及充分不必要條件的判定.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】
由已知條件推導(dǎo)出是首項(xiàng)為,公比為的等比數(shù)列,由此能求出的值.【題目詳解】解:因?yàn)閿?shù)列的前項(xiàng)和為,,且(),,.即,.是首項(xiàng)為,公比為的等比數(shù)列,故答案為:【題目點(diǎn)撥】本題考查數(shù)列的前項(xiàng)和的求法,解題時(shí)要注意等比數(shù)列的性質(zhì)的合理應(yīng)用,屬于中檔題.12、1【解題分析】
應(yīng)用余弦定理得出,再結(jié)合已知等式配出即可.【題目詳解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案為1.【題目點(diǎn)撥】本題考查余弦定理,掌握余弦定理是解題關(guān)鍵,解題時(shí)不需要求出的值,而是用整體配湊的方法得出配湊出,這樣可減少計(jì)算.13、【解題分析】
曲線即圓曲線的上半部分,因?yàn)閳A是單位圓,所以,,,,聯(lián)立曲線與直線方程,消元后根據(jù)韋達(dá)定理與直線方程代入即可求解.【題目詳解】由消去得,則,由三角函數(shù)的定義得故.【題目點(diǎn)撥】本題主要考查三角函數(shù)的定義,直線與圓的應(yīng)用.此題關(guān)鍵在于曲線的識(shí)別與三角函數(shù)定義的應(yīng)用.14、【解題分析】
記,則,則可求出,設(shè),,得,,故結(jié)合余弦定理可得,解得的值,即可求,進(jìn)而求的值.【題目詳解】根據(jù)題意,不妨設(shè),,則,因,所以,設(shè),由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【題目點(diǎn)撥】本題主要考查了余弦定理在解三角形中的綜合應(yīng)用以及同角三角函數(shù)的基本關(guān)系式,屬于中檔題.15、【解題分析】
根據(jù)三角公式得輔助角公式,結(jié)合三角函數(shù)的對(duì)稱性求出值,再利用的取值范圍求出函數(shù)的最小值.【題目詳解】解:,令,則,則.因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以,即,則,平方得.整理可得,則,所以函數(shù).因?yàn)?,所以,?dāng)時(shí),即,函數(shù)有最小值為.故答案為:.【題目點(diǎn)撥】本題主要考查三角函數(shù)最值求解,結(jié)合輔助角公式和利用三角函數(shù)的對(duì)稱性建立方程是解決本題的關(guān)鍵.16、【解題分析】
根據(jù)等比數(shù)列的性質(zhì)得到成等比,從而列出關(guān)系式,又,接著用表示,代入到關(guān)系式中,可求出的值.【題目詳解】因?yàn)榈缺葦?shù)列的前n項(xiàng)和為,則成等比,且,所以,又因?yàn)椋?,所以,整理?故答案為:.【題目點(diǎn)撥】本題考查學(xué)生靈活運(yùn)用等比數(shù)列的性質(zhì)化簡(jiǎn)求值,是一道基礎(chǔ)題。解決本題的關(guān)鍵是根據(jù)等比數(shù)列的性質(zhì)得到成等比.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1【解題分析】
(1)取中點(diǎn),連接,即為所求角。在中,易得MC,NC的長(zhǎng),MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點(diǎn),連接,易得,所以為的中位線,所以為中點(diǎn),所以的值為1?!绢}目詳解】(1)取中點(diǎn),連接因?yàn)闉榫匦?,分別為中點(diǎn),所以所以異面直線與所成角就是與所成的銳角或直角因?yàn)槠矫嫫矫?,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圓周上點(diǎn),且,所以中,,由余弦定理可求得所以異面直線與所成角的余弦值為(2)連接,連接和交于點(diǎn),連接因?yàn)橹本€平面,直線平面,平面平面所以矩形的對(duì)角線交點(diǎn)為中點(diǎn)所以為的中位線,所以為中點(diǎn)又,所以的值為1【題目點(diǎn)撥】(1)異面直線所成夾角一般是要平移到一個(gè)平面。(2)通過幾何關(guān)系確定未知點(diǎn)的位置,再求解線段長(zhǎng)即可。18、(1)證明見解析;(2)【解題分析】
(1)將已知條件湊配成,由此證得數(shù)列為等差數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,進(jìn)而求得的表達(dá)式,利用分組求和法求得.【題目詳解】(1)證明:∵∴又∵∴所以數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列;(2)由(1)知,,所以.所以【題目點(diǎn)撥】本小題主要考查根據(jù)遞推關(guān)系式證明等差數(shù)列,考查分組求和法,屬于中檔題.19、(1)證明見解析;(2)證明見解析.【解題分析】
(1)連結(jié)交于,連結(jié),先證明,再證明平;(2)取的中點(diǎn)為,連結(jié),,,先證明平面,再證明平面平面.【題目詳解】證明:(1)連結(jié)交于,連結(jié),由于棱柱的側(cè)面是平行四邊形,故為的中點(diǎn),又為的中點(diǎn),故是的中位線,所以,又平面,平面,所以平面.(2)取的中點(diǎn)為,連結(jié),,,在中,,由,知為正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【題目點(diǎn)撥】本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于基礎(chǔ)題.20、(1);(2)【解題分析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達(dá)到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉(zhuǎn)化為求bc的最大值.【題目詳解】(1)因?yàn)椋?+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因?yàn)閎2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,當(dāng)且僅當(dāng)b=c=1時(shí),取等號(hào).∴面積的最大值.【題目點(diǎn)撥】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024影響國(guó)際貿(mào)易的貿(mào)易保護(hù)主義與合同應(yīng)對(duì)3篇
- 車間智能化信息系統(tǒng)建設(shè)策略
- 二零二五年度國(guó)際科研合作項(xiàng)目合同簽訂與知識(shí)產(chǎn)權(quán)歸屬3篇
- DGTJ 08-115-2016 燃?xì)夥植际焦┠芟到y(tǒng)工程技術(shù)規(guī)程
- 武術(shù)新編長(zhǎng)拳8-1 說課稿-2023-2024學(xué)年高一上學(xué)期體育與健康人教版必修第一冊(cè)
- 2025年山東省建筑安全員-A證考試題庫(kù)及答案
- 2025四川省安全員A證考試題庫(kù)附答案
- 2025年小學(xué)太陽(yáng)能熱水系統(tǒng)施工合同范本2篇
- 2025年上外版二年級(jí)語(yǔ)文下冊(cè)月考試卷
- 2025河北省建筑安全員《B證》考試題庫(kù)
- 附件2:慢病管理中心評(píng)審實(shí)施細(xì)則2024年修訂版
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之4:“4組織環(huán)境-確定創(chuàng)新管理體系的范圍”解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024)
- 2024-2030年中國(guó)散熱產(chǎn)業(yè)運(yùn)營(yíng)效益及投資前景預(yù)測(cè)報(bào)告
- 和父親斷絕聯(lián)系協(xié)議書范本
- 2024時(shí)事政治考試題庫(kù)(100題)
- 2024地理知識(shí)競(jìng)賽試題
- 《城市軌道交通工程盾構(gòu)吊裝技術(shù)規(guī)程》(征求意見稿)
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
- 【新教材】統(tǒng)編版(2024)七年級(jí)上冊(cè)語(yǔ)文期末復(fù)習(xí)課件129張
- 欽州市浦北縣2022-2023學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題
- 古典時(shí)期鋼琴演奏傳統(tǒng)智慧樹知到期末考試答案章節(jié)答案2024年星海音樂學(xué)院
評(píng)論
0/150
提交評(píng)論