版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省朝陽市柳城高級中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形2.中國數(shù)學(xué)家劉微在《九章算術(shù)注》中提出“割圓”之說:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣.”意思是“圓內(nèi)接正多邊形的邊數(shù)無限增加的時候,它的周長的極限是圓的周長,它的面積的極限是圓的面積”.如圖,若在圓內(nèi)任取一點,則此點取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為()A. B. C. D.3.把黑、紅、白3張紙牌分給甲、乙、丙三人,則事件“甲分得紅牌”與“乙分得紅牌”是()A.對立事件B.互斥但不對立事件C.不可能事件D.必然事件4.等比數(shù)列的前項和、前項和、前項和分別為,則().A. B.C. D.5.設(shè)P是所在平面內(nèi)的一點,,則()A. B. C. D.6.直線過點,且與以為端點的線段總有公共點,則直線斜率的取值范圍是()A. B. C. D.7.甲、乙兩隊準(zhǔn)備進(jìn)行一場籃球賽,根據(jù)以往的經(jīng)驗甲隊獲勝的概率是,兩隊打平的概率是,則這次比賽乙隊不輸?shù)母怕适牵ǎ〢.- B. C. D.8.若角α的終邊過點P(-3,-4),則cos(π-2α)的值為()A. B. C. D.9.在區(qū)間上隨機(jī)選取一個數(shù),則滿足的概率為()A. B. C. D.10.已知數(shù)列滿足遞推關(guān)系,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如果奇函數(shù)f(x)在[3,7]上是增函數(shù)且最小值是5,那么f(x)在[-7,-3]上是_________.①減函數(shù)且最小值是-5;②減函數(shù)且最大值是-5;③增函數(shù)且最小值是-5;④增函數(shù)且最大值是-512.將十進(jìn)制數(shù)30化為二進(jìn)制數(shù)為________.13.在等比數(shù)列中,,,則______________.14.如圖,在邊長為的菱形中,,為中點,則______.15.等差數(shù)列前項和為,已知,,則_____.16.據(jù)監(jiān)測,在海濱某城市附近的海面有一臺風(fēng),臺風(fēng)中心位于城市的南偏東30°方向,距離城市的海面處,并以的速度向北偏西60°方向移動(如圖示).如果臺風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺風(fēng)移動的方向與速度不變,那么該城市受臺風(fēng)侵襲的時長為_______小時.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(Ⅰ)求,的值,并證明:0<≤1;(Ⅱ)證明:;(Ⅲ)證明:.18.某大橋是交通要塞,每天擔(dān)負(fù)著巨大的車流量.已知其車流量(單位:千輛)是時間(,單位:)的函數(shù),記為,下表是某日橋上的車流量的數(shù)據(jù):03691215182124(千輛)3.01.02.95.03.11.03.15.03.1經(jīng)長期觀察,函數(shù)的圖象可以近似地看做函數(shù)(其中,,,)的圖象.(1)根據(jù)以上數(shù)據(jù),求函數(shù)的近似解析式;(2)為了緩解交通壓力,有關(guān)交通部門規(guī)定:若車流量超過4千輛時,核定載質(zhì)量10噸及以上的大貨車將禁止通行,試估計一天內(nèi)將有多少小時不允許這種貨車通行?19.已知,,其中,,且函數(shù)在處取得最大值.(1)求的最小值,并求出此時函數(shù)的解析式和最小正周期;(2)在(1)的條件下,先將的圖像上的所有點向右平移個單位,再把所得圖像上所有點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),然后將所得圖像上所有的點向下平移個單位,得到函數(shù)的圖像.若在區(qū)間上,方程有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍;(3)在(1)的條件下,已知點P是函數(shù)圖像上的任意一點,點Q為函數(shù)圖像上的一點,點,且滿足,求的解集.20.已知向量.(1)求的值;(2)若,且,求.21.王某2017年12月31日向銀行貸款元,銀行貸款年利率為,若此貸款分十年還清(2027年12月31日還清),每年年底等額還款(每次還款金額相同),設(shè)第年末還款后此人在銀行的欠款額為元.(1)設(shè)每年的還款額為元,請用表示出;(2)求每年的還款額(精確到元).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【題目詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項:【題目點撥】本題考查相等向量、垂直關(guān)系的向量表示,屬于基礎(chǔ)題.2、C【解題分析】
設(shè)出圓的半徑,表示出圓的面積和圓內(nèi)接正六邊形的面積,即可由幾何概型概率計算公式得解.【題目詳解】設(shè)圓的半徑為則圓的面積為圓內(nèi)接正六邊形的面積為由幾何概型概率可知,在圓內(nèi)任取一點,則此點取自其內(nèi)接正六邊形的邊界及其內(nèi)部的概率為故選:C【題目點撥】本題考查了圓的面積及圓內(nèi)接正六邊形的面積求法,幾何概型概率的計算公式,屬于基礎(chǔ)題.3、B【解題分析】試題分析:把黑、紅、白3張紙牌分給甲、乙、丙三人,事件“甲分得紅牌”與“乙分得紅牌”不可能同時發(fā)生,是互斥事件,但除了事件“甲分得紅牌”與“乙分得紅牌”還有“丙分得紅牌”,所以這兩者不是對立事件,答案為B.考點:互斥與對立事件.4、B【解題分析】
根據(jù)等比數(shù)列前項和的性質(zhì),可以得到等式,化簡選出正確答案.【題目詳解】因為這個數(shù)列是等比數(shù)列,所以成等比數(shù)列,因此有,故本題選B.【題目點撥】本題考查了等比數(shù)列前項和的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.5、B【解題分析】移項得.故選B6、C【解題分析】
求出,判斷當(dāng)斜率不存在時是否滿足題意,滿足兩數(shù)之外;不滿足兩數(shù)之間.【題目詳解】,當(dāng)斜率不存在時滿足題意,即【題目點撥】本題主要考查斜率公式的應(yīng)用,屬于基礎(chǔ)題.7、C【解題分析】
因為“甲隊獲勝”與“乙隊不輸”是對立事件,對立事件的概率之和為1,進(jìn)而即可求出結(jié)果.【題目詳解】由題意,“甲隊獲勝”與“乙隊不輸”是對立事件,因為甲隊獲勝的概率是,所以,這次比賽乙隊不輸?shù)母怕适?故選C【題目點撥】本題主要考查對立事件的概率問題,熟記對立事件的性質(zhì)即可,屬于??碱}型.8、C【解題分析】
由三角函數(shù)的定義得,再利用誘導(dǎo)公式以及二倍角余弦公式求解.【題目詳解】由三角函數(shù)的定義,可得,則,故選C.【題目點撥】本題主要考查了三角函數(shù)的定義,以及二倍角的余弦公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、D【解題分析】
在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長度比,即可求解.【題目詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長度比的幾何概型,可得概率為,故選D.【題目點撥】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認(rèn)真審題,合理利用長度比求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、B【解題分析】
兩邊取倒數(shù),可得新的等差數(shù)列,根據(jù)等差數(shù)列的通項公式,可得結(jié)果.【題目詳解】由,所以則,又,所以所以數(shù)列是以2為首項,1為公比的等差數(shù)列所以,則所以故選:B【題目點撥】本題主要考查由遞推公式得到等差數(shù)列,難點在于取倒數(shù),學(xué)會觀察,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、④【解題分析】
由題意結(jié)合奇函數(shù)的對稱性和所給函數(shù)的性質(zhì)即可求得最終結(jié)果.【題目詳解】奇函數(shù)的函數(shù)圖象關(guān)于坐標(biāo)原點中心對稱,則若奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為1,那么f(x)在區(qū)間[﹣7,﹣3]上是增函數(shù)且最大值為﹣1.故答案為:④.【題目點撥】本題考查了奇函數(shù)的性質(zhì),函數(shù)的對稱性及其應(yīng)用等,重點考查學(xué)生對基礎(chǔ)概念的理解和計算能力,屬于中等題.12、【解題分析】
利用除取余法可將十進(jìn)制數(shù)化為二進(jìn)制數(shù).【題目詳解】利用除取余法得因此,,故答案為.【題目點撥】本題考查將十進(jìn)制數(shù)轉(zhuǎn)化為二進(jìn)制數(shù),將十進(jìn)制數(shù)轉(zhuǎn)化為進(jìn)制數(shù),常用除取余法來求解,考查計算能力,屬于基礎(chǔ)題.13、1【解題分析】
根據(jù)已知兩項求出數(shù)列的公比,然后根據(jù)等比數(shù)列的通項公式進(jìn)行求解即可.【題目詳解】∵a1=1,a5=4∴公比∴∴該等比數(shù)列的通項公式a3=11=1故答案為:1.【題目點撥】本題主要考查了等比數(shù)列的通項公式,一般利用基本量的思想,屬于基礎(chǔ)題.14、【解題分析】
選取為基底,根據(jù)向量的加法減法運(yùn)算,利用數(shù)量積公式計算即可.【題目詳解】因為,,,又,.【題目點撥】本題主要考查了向量的加法減法運(yùn)算,向量的數(shù)量積,屬于中檔題.15、1【解題分析】
首先根據(jù)、即可求出和,從而求出?!绢}目詳解】,①,②①②得,,即,∴,即,∴,故答案為:1.【題目點撥】本題主要考查了解方程,以及等差數(shù)列的性質(zhì)和前項和。其中等差數(shù)列的性質(zhì):若則比較常考,需理解掌握。16、1【解題分析】
設(shè)臺風(fēng)移動M處的時間為th,則|PM|=20t,利用余弦定理求得AM,而該城市受臺風(fēng)侵襲等價于AM≤60,解此不等式可得.【題目詳解】如圖:設(shè)臺風(fēng)移動M處的時間為th,則|PM|=20t,依題意可得,在三角形APM中,由余弦定理可得:依題意該城市受臺風(fēng)侵襲等價于AM≤60,即AM2≤602,化簡得:,所以該城市受臺風(fēng)侵襲的時間為6﹣1=1小時.故答案為:1.【題目點撥】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)見證明【解題分析】
(I)直接代入計算得,利用得從而可證結(jié)論;(II)證明,即可;(III)由(II)可得,即,,應(yīng)用累加法可得,從而證得結(jié)論.【題目詳解】解:(Ⅰ)由已知得,.因為所以.所以又因為所以與同號.又因為>0所以.(Ⅱ)因為又因為,所以.同理又因為,所以綜上,(Ⅲ)證明:由(Ⅱ)可得所以,即所以,,...,累加可得所以由(Ⅱ)可得所以,即所以,,...,累加可得所以即綜上所述.【題目點撥】本題考查數(shù)列遞推公式,考查數(shù)列中的不等式證明.第(I)問題關(guān)鍵是證明數(shù)列是遞減數(shù)列,第(II)問題是用作差法證明,第(III)問題是在第(II)問基礎(chǔ)上用累加法求和(先求).18、(1)(2)8個小時【解題分析】
(1)根據(jù)函數(shù)的最大最小值可求出和,根據(jù)周期求出,根據(jù)一個最高點的橫坐標(biāo)可求得;
(2)解不等式可得.【題目詳解】(1)根據(jù)表格中的數(shù)據(jù)可得:由,,解得:
由當(dāng)時,有最大值,則即,得.
所以函數(shù)的近似解析式(2)若車流量超過4千輛時,即
所以,則所以,且.所以和滿足條件.所以估計一天內(nèi)將有8小時不允許這種貨車通行.【題目點撥】本題考查了根據(jù)一些特殊的函數(shù)值觀察周期特點,求解三角函數(shù)解析式以及簡單應(yīng)用,屬中檔題.19、(1)的最小值為1,,,(2)(3)原不等式的解集為【解題分析】
(1)先將化成正弦型,然后利用在處取得最大值求出,然后即可得到的解析式和周期(2)先根據(jù)圖象的變換得到,然后畫出在區(qū)間上的圖象,條件轉(zhuǎn)化為的圖象與直線有兩個交點即可(3)利用坐標(biāo)的對應(yīng)關(guān)系式,求出的函數(shù)的關(guān)系式,進(jìn)一步利用三角不等式的應(yīng)用求出結(jié)果.【題目詳解】(1)因為,所以因為在處取得最大值.所以,即當(dāng)時的最小值為1此時,(2)將的圖像上的所有的點向右平移個單位得到的函數(shù)為,再把所得圖像上所有的點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變)得到的函數(shù)為,然后將所得圖像上所有的點向下平移個單位,得到函數(shù)在區(qū)間上的圖象為:方程有兩個不相等的實數(shù)根等價于的圖象與直線有兩個交點所以,解得(3)設(shè),因為點,且滿足所以,所以因為點為函數(shù)圖像上的一點所以即因為,所以所以所以所以原不等式的解集為【題目點撥】本題考查的知識要點:三角函數(shù)關(guān)系式的變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,平面向量的數(shù)量積的應(yīng)用,三角不等式的解法及應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.20、(1);(2).【解題分析】
(1)對等式進(jìn)行平方運(yùn)算,根據(jù)平面向量的模和數(shù)量積的坐標(biāo)表示公式,結(jié)合兩角差的余弦公式直接求解即可;(2)由(1)可以結(jié)合同角的三角函數(shù)關(guān)系式求出的值,再由同角三角函數(shù)關(guān)系式結(jié)合的值求出的值,最后利用兩角和的正弦公式求出的值即可.【題目詳解】(1);(2)因為,所以,而,所以,因為,,所以.因此有.【題目點撥】本題考查了已知平面向量的模求參數(shù)問題,考查了平面向量數(shù)量積的坐標(biāo)表示公式,考查了兩角差的余弦公式,考查了兩角和的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際商務(wù)中心土地租賃合同鄉(xiāng)鎮(zhèn)
- 畫廊文化協(xié)理員聘用合同
- 智能物流大清包施工合同
- 城市交通廉政合同
- 沙石供應(yīng)簡易施工合同
- 教學(xué)設(shè)備租賃及運(yùn)輸合同
- 圖書館翻新施工合同
- 供水供電大院租賃合同
- 環(huán)保設(shè)施防雷施工協(xié)議
- 兒童樂園電梯采購合同
- 2024-2030年中國語言服務(wù)行業(yè)發(fā)展規(guī)劃與未來前景展望研究報告
- 2024-2030年白玉蝸牛養(yǎng)殖行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景與投資機(jī)會研究報告
- HGT 2902-2024《模塑用聚四氟乙烯樹脂》
- 2024 年上海市普通高中學(xué)業(yè)水平等級性考試 物理 試卷
- 國家開放大學(xué)??啤斗ɡ韺W(xué)》(第三版教材)形成性考核試題及答案
- 計量基礎(chǔ)知識考核試題及參考答案
- 眼科學(xué)基礎(chǔ)病例分析
- 混合痔中醫(yī)護(hù)理 方案
- 美國刑法制度
- 慢性病防治和健康生活知識講座
- 2024年教師招聘考試-中小學(xué)校長招聘筆試參考題庫含答案
評論
0/150
提交評論