版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江西省吉安市吉水縣二中高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在等差數(shù)列中,已知=2,=16,則為()A.8 B.128 C.28 D.142.設(shè)等比數(shù)列的前項(xiàng)和為,若,,則()A.63 B.62 C.61 D.603.已知等差數(shù)列{an}的前n項(xiàng)和為,滿足S5=S9,且a1>0,則Sn中最大的是()A. B. C. D.4.若是2與8的等比中項(xiàng),則等于()A. B. C. D.325.已知是兩條異面直線,,那么與的位置關(guān)系()A.一定是異面 B.一定是相交 C.不可能平行 D.不可能垂直6.三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,則二面角V-AB-CA.30° B.45° C.60° D.90°7.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.8.設(shè)等差數(shù)列的前項(xiàng)的和為,若,,且,則()A. B. C. D.9.設(shè)為正數(shù),為的等差中項(xiàng),為的等比中項(xiàng),則與的大小關(guān)為()A. B. C. D.10.若實(shí)數(shù)滿足約束條件,則的最大值為()A.9 B.7 C.6 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前項(xiàng)和為,且,,則;12.中,,,,則________.13.已知向量,且,則_______.14.九連環(huán)是我國從古至今廣泛流傳的一種益智游戲,它用九個(gè)圓環(huán)相連成串,以解開為勝.據(jù)明代楊慎《丹鉛總錄》記載:“兩環(huán)互相貫為一,得其關(guān)捩,解之為二,又合面為一”.在某種玩法中,用表示解下個(gè)圓環(huán)所需的移動(dòng)最少次數(shù),滿足,且,則解下4個(gè)環(huán)所需的最少移動(dòng)次數(shù)為_____.15.將邊長為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為.16.已知,,則________(用反三角函數(shù)表示)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,,,的對邊分別為,,,已知.(1)判斷的形狀;(2)若,,求.18.設(shè)數(shù)列,,已知,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)為數(shù)列的前項(xiàng)和,對任意.(i)求證:;(ii)若恒成立,求實(shí)數(shù)的取值范圍.19.已知直線和.(1)若,求實(shí)數(shù)的值;(2)若,求實(shí)數(shù)的值.20.如圖,四棱錐中,是正三角形,四邊形ABCD是矩形,且平面平面.(1)若點(diǎn)E是PC的中點(diǎn),求證:平面BDE;(2)若點(diǎn)F在線段PA上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.21.如圖,已知圓:,點(diǎn).(1)求經(jīng)過點(diǎn)且與圓相切的直線的方程;(2)過點(diǎn)的直線與圓相交于、兩點(diǎn),為線段的中點(diǎn),求線段長度的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】
將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,進(jìn)而求得的值.【題目詳解】依題意,解得,故.故選:D.【題目點(diǎn)撥】本小題主要考查等差數(shù)列通項(xiàng)的基本量計(jì)算,屬于基礎(chǔ)題.2、A【解題分析】
由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計(jì)算可得.【題目詳解】因?yàn)?,,成等比?shù)列,即3,12,成等比數(shù)列,所以,解得.【題目點(diǎn)撥】本題考查等比數(shù)列的性質(zhì)與前項(xiàng)和的計(jì)算,考查運(yùn)算求解能力.3、B【解題分析】
由S5=S9可得a7+a8=0,再結(jié)合首項(xiàng)即可判斷Sn最大值【題目詳解】依題意,由S5=S9,a1>0,所以數(shù)列{an}為遞減數(shù)列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以則Sn中最大的是S7,故選:B.【題目點(diǎn)撥】本題考查等差數(shù)列Sn最值的判斷,屬于基礎(chǔ)題4、B【解題分析】
利用等比中項(xiàng)性質(zhì)列出等式,解出即可?!绢}目詳解】由題意知,,∴.故選B【題目點(diǎn)撥】本題考查等比中項(xiàng),屬于基礎(chǔ)題。5、C【解題分析】
由平行公理,若,因?yàn)?,所以,與、是兩條異面直線矛盾,異面和相交均有可能.【題目詳解】、是兩條異面直線,,那么與異面和相交均有可能,但不會(huì)平行.因?yàn)槿?,因?yàn)?,由平行公理得,與、是兩條異面直線矛盾.故選C.【題目點(diǎn)撥】本題主要考查空間的兩條直線的位置關(guān)系的判斷、平行公理等知識(shí),考查邏輯推理能力,屬于基礎(chǔ)題.6、C【解題分析】
取AB中點(diǎn)O,連結(jié)VO,CO,由等腰三角形的性質(zhì)可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度數(shù).【題目詳解】取AB中點(diǎn)O,連結(jié)VO,CO,∴三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度數(shù)為60°【題目點(diǎn)撥】本題主要考查三棱錐的性質(zhì)、二面角的求法,屬于中檔題.求二面角的大小既能考查線線垂直關(guān)系,又能考查線面垂直關(guān)系,同時(shí)可以考查學(xué)生的計(jì)算能力,是高考命題的熱點(diǎn),求二面角的方法通常有兩個(gè)思路:一是利用空間向量,建立坐標(biāo)系,這種方法優(yōu)點(diǎn)是思路清晰、方法明確,但是計(jì)算量較大;二是傳統(tǒng)方法,求出二面角平面角的大小,這種解法的關(guān)鍵是找到平面角.7、C【解題分析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.8、C【解題分析】,,,,,,故選C.9、B【解題分析】
由等差中項(xiàng)及等比中項(xiàng)的運(yùn)算可得,,再結(jié)合即可得解.【題目詳解】解:因?yàn)闉檎龜?shù),為的等差中項(xiàng),為的等比中項(xiàng),則,,又,當(dāng)且僅當(dāng)時(shí)取等號,又,所以,故選:B.【題目點(diǎn)撥】本題考查了等差中項(xiàng)及等比中項(xiàng)的運(yùn)算,重點(diǎn)考查了重要不等式的應(yīng)用,屬基礎(chǔ)題.10、A【解題分析】由約束條件作出可行域如圖,聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為,故選A.【方法點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解題分析】
若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因?yàn)樵诘炔顢?shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.12、7【解題分析】
在中,利用余弦定理得到,即可求解,得到答案.【題目詳解】由余弦定理可得,解得.故答案為:7.【題目點(diǎn)撥】本題主要考查了余弦定理的應(yīng)用,其中解答中熟記三角形的余弦定理,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解題分析】
先由向量共線,求出,再由向量模的坐標(biāo)表示,即可得出結(jié)果.【題目詳解】因?yàn)?,且,所以,解得,所以,因?故答案為【題目點(diǎn)撥】本題主要考查求向量的模,熟記向量共線的坐標(biāo)表示,以及向量模的坐標(biāo)表示即可,屬于基礎(chǔ)題型.14、7【解題分析】
利用的通項(xiàng)公式,依次求出,從而得到,即可得到答案?!绢}目詳解】由于表示解下個(gè)圓環(huán)所需的移動(dòng)最少次數(shù),滿足,且所以,,故,所以解下4個(gè)環(huán)所需的最少移動(dòng)次數(shù)為7故答案為7.【題目點(diǎn)撥】本題考查數(shù)列的遞推公式,屬于基礎(chǔ)題。15、【解題分析】
解:根據(jù)題意可知三棱錐B﹣ACD的三條側(cè)棱BD、DC、DA兩兩互相垂直,所以它的外接球就是它擴(kuò)展為長方體的外接球,∵長方體的對角線的長為:,∴球的直徑是,半徑為,∴三棱錐B﹣ACD的外接球的表面積為:4π5π.故答案為5π考點(diǎn):外接球.16、【解題分析】∵,,∴.故答案為三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為直角三角形或等腰三角形(2)【解題分析】
(1)由正弦定理和題設(shè)條件,得,再利用三角恒等變換的公式,化簡得,進(jìn)而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【題目詳解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,則,則或,所以或,所以為直角三角形或等腰三角形.(2)因?yàn)?,則為等腰三角形,從而,由余弦定理,得,所以.【題目點(diǎn)撥】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運(yùn)用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時(shí),運(yùn)用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時(shí),運(yùn)用余弦定理求解.18、(1);(2)(i)見證明;(ii)【解題分析】
(1)計(jì)算可知數(shù)列為等比數(shù)列;(2)(i)要證即證{}恒為0;(ii)由前兩問求出再求出,帶入式子,再解不等式.【題目詳解】(1),又,是以2為首項(xiàng),為公比的等比數(shù)列,;(2)(i),又恒成立,即(ii)由,,兩式相加即得:,,,,當(dāng)n為奇數(shù)時(shí),隨n的增大而遞增,且;當(dāng)n為偶數(shù)時(shí),隨n的增大而遞減,且;的最大值為,的最小值為2,解得,所以實(shí)數(shù)p的取值范圍為.【題目點(diǎn)撥】本類試題,注意看問題,一般情況,問題都會(huì)指明解題方向19、(1);(2).【解題分析】
(1)借助兩直線垂直的充要條件建立方程求解;(2)借助兩直線平行充要條件建立方程求解.【題目詳解】(1)若,則.(2)若,則或2.經(jīng)檢驗(yàn),時(shí),與重合,時(shí),符合條件,∴.【點(diǎn)晴】解析幾何是運(yùn)用代數(shù)的方法和知識(shí)解決幾何問題一門學(xué)科,是數(shù)形結(jié)合的典范,也是高中數(shù)學(xué)的重要內(nèi)容和高考的熱點(diǎn)內(nèi)容.解答本題時(shí)充分運(yùn)用和借助題設(shè)條件中的垂直和平行條件,建立了含參數(shù)的直線的方程,然后再運(yùn)用已知條件進(jìn)行分析求解,從而將問題進(jìn)行轉(zhuǎn)化和化歸,進(jìn)而使問題獲解.如本題的第一問中求參數(shù)的值時(shí),是直接運(yùn)用垂直的充要條件建立方程,這是方程思想的運(yùn)用;再如第二問中求參數(shù)的值時(shí)也是運(yùn)用了兩直線平行的條件,但要注意的是這個(gè)條件不是兩直線平行的充要條件,所以一定代回進(jìn)行檢驗(yàn),這也是學(xué)生經(jīng)常會(huì)出現(xiàn)錯(cuò)誤的地方.20、(Ⅰ)證明見解析;(Ⅱ)【解題分析】試題分析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點(diǎn)E是PC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點(diǎn)M,則FM⊥平面ABCD,進(jìn)一步利用求得最后利用平行線分線段成比例求出λ的值試題解析:(Ⅰ)連接AC,設(shè)AC∩BD=Q,又點(diǎn)E是PC的中點(diǎn),則在△PAC中,中位線EQ∥PA,又EQ?平面BDE,PA?平面BDE.所以PA∥平面BDE(Ⅱ)解:依據(jù)題意可得:PA=AB=PB=2,取AB中點(diǎn)O,所以PO⊥AB,且又平面PAB⊥平面ABCD,則PO⊥平面ABCD;作FM∥PO于AB上一點(diǎn)M,則FM⊥平面ABCD,因?yàn)樗倪呅蜛BCD是矩形,所以BC⊥平面PAB,則△PBC為直角三角形,所以,則直角三角形△ABD的面積為,由FM∥PO得:考點(diǎn):直線與平面平行的判定;棱柱、棱錐、棱臺(tái)的體積21、(1)或;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西京學(xué)院《建筑裝飾材料及施工工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 第六首古詩《書湖陰先生壁》
- 西京學(xué)院《工程材料與熱處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《中學(xué)數(shù)學(xué)教材分析》2022-2023學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《藝術(shù)思潮與流派》2023-2024學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《文化人類學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《企業(yè)管理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《工程制圖與打印》2022-2023學(xué)年第一學(xué)期期末試卷
- 西昌學(xué)院《影視戲劇鑒賞》2022-2023學(xué)年第一學(xué)期期末試卷
- 西昌學(xué)院《物聯(lián)網(wǎng)工程實(shí)訓(xùn)》2022-2023學(xué)年期末試卷
- 第23章-----總需求與總供給
- 通信線路工程驗(yàn)收規(guī)范-原文件
- 二次供水工程技術(shù)規(guī)程(CJJ140—2010 )
- 腦梗死標(biāo)準(zhǔn)病歷、病程記錄、出院記錄模板
- 鋼鐵動(dòng)力廠 氮?dú)夤芫€不停車帶壓開孔工程施工方案
- Kolcaba的舒適狀況量表
- ISO13485-2016跟ISO9001-2015條款對應(yīng)關(guān)系
- 海康威視視頻車位誘導(dǎo)與反向?qū)ぼ囅到y(tǒng)解決方案
- 個(gè)案護(hù)理報(bào)告范文參考
- 康復(fù)護(hù)理學(xué)第五章-常用康復(fù)治療技術(shù)二1
- 小學(xué)生日常衛(wèi)生小常識(shí)(課堂PPT)
評論
0/150
提交評論