蘇科版九年級上第2章 對稱圖形-圓2.1圓_第1頁
蘇科版九年級上第2章 對稱圖形-圓2.1圓_第2頁
蘇科版九年級上第2章 對稱圖形-圓2.1圓_第3頁
蘇科版九年級上第2章 對稱圖形-圓2.1圓_第4頁
蘇科版九年級上第2章 對稱圖形-圓2.1圓_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2.1

圓紅日、滿月、飛輪、硬幣……圓的形象處處可見.平面圖形中,圓象征著完美、和諧.2.1圓(1) 線段OP繞它固定的一個端點O旋轉(zhuǎn)一周,另一端點P運動所形成的圖形叫做圓。定點O叫做圓心。線段OP叫做圓的半徑。表示:以O(shè)為圓心的圓,記做“⊙O”,讀做“圓O”。在同一平面內(nèi),愛好運動的小華、小強、小兵三人相邀搞一次擲飛鏢比賽。他們把靶子釘在一面土墻上,規(guī)則是誰擲出落點離紅心越近,誰就勝。如下圖中A、B、C三點分別是他們?nèi)四骋惠啍S鏢的落點,你認(rèn)為這一輪中誰的成績好?

問題情境ABC

如圖,設(shè)⊙O的半徑為r,A點在圓內(nèi),B點在圓上,C點在圓外,那么點A在⊙O內(nèi)

點B在⊙O上

點C在⊙O外

OA<r,

OB=r,

OC>r.

反過來也成立點與圓的位置關(guān)系

OA<rOB=rOC>rABCro設(shè)⊙O

的半徑為r,點P到圓心的距離OP=d,則有:點P在⊙O內(nèi)

點P在⊙O上

點P在⊙O外

點與圓的位置關(guān)系d<rd=rd>rrpdprd

Prd圓是

點的集合.平面內(nèi)到定點的距離等于定長的圓的內(nèi)部是

點的集合.圓的外部是

點的集合.平面內(nèi)到圓心的距離小于半徑的平面內(nèi)到圓心的距離大于半徑的數(shù)學(xué)·思考2.1圓(1)例1已知⊙O的半徑為4cm,如果點P到圓心O的距離為4.5cm,那么點P與⊙O有怎樣的位置關(guān)系?如果點P到圓心O的距離為4cm、3cm呢?如何判斷點與圓的位置關(guān)系?

只需要比較點到圓心的距離d與半徑r的大小關(guān)系.解:設(shè)⊙O的半徑為rcm,點P到圓心O的距離為dcm.由題意得,r=4cm.當(dāng)d=4.5cm時,∵

d>r,∴點P在⊙O外.當(dāng)d=4cm時,

d=r,∴點P在⊙O上.當(dāng)d=3cm時,

d<r,∴點P在⊙O內(nèi).知識運用2.1圓(1)(3)在所畫圖中,到點A的距離小于或等于2cm,且到點B的距離大于或等于3cm的點的集合是怎樣的圖形?把它表示出來.

PQBA知識運用2.1圓(1)如圖,已知點A、B,且AB=4cm.(1)畫出下列圖形:到點A的距離等于2cm的點的集合;到點B的距離等于3cm的點的集合.(2)在所畫圖中,到點A的距離等于2cm,且到點B的距離等于3cm的點有幾個?請在圖中將它們表示出來.∴點B、C、D、E在以點M為圓心,為半徑的圓上.解:連接MD、ME.∵BD、CE是△ABC的高,∴∠BEC=∠BDC=90°.在Rt△BEC中,M為BC的中點,同理,∴MB=ME=MD=MC,又∵已知:如圖,BD、CE是△ABC的高,M為BC的中點.試說明點B、C、D、E在以點M為圓心的同一圓上.2.1圓(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論