版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省蘇州市常熟中學高一數(shù)學第二學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.平面內(nèi)任一向量都可以表示成的形式,下列關于向量的說法中正確的是()A.向量的方向相同 B.向量中至少有一個是零向量C.向量的方向相反 D.當且僅當時,2.如果將直角三角形的三邊都增加1個單位長度,那么新三角形()A.一定是銳角三角形 B.一定是鈍角三角形C.一定是直角三角形 D.形狀無法確定3.若實數(shù)x,y滿足條件,則目標函數(shù)z=2x-y的最小值()A. B.-1 C.0 D.24.已知向量,且,則的值為()A.1 B.3 C.1或3 D.45.抽查10件產(chǎn)品,設“至少抽到2件次品”為事件,則的對立事件是()A.至多抽到2件次品 B.至多抽到2件正品C.至少抽到2件正品 D.至多抽到一件次品6.已知等比數(shù)列的首項,公比,則()A. B. C. D.7.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點是:前兩個數(shù)都是1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,則().A.1 B.2019 C. D.8.數(shù)列1,3,6,10,…的一個通項公式是()A. B.C. D.9.《九章算術》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.10.下圖是500名學生某次數(shù)學測試成績(單位:分)的頻率分布直方圖,則這500名學生中測試成績在區(qū)間[90,100)中的學生人數(shù)是A.60 B.55 C.45 D.50二、填空題:本大題共6小題,每小題5分,共30分。11.已知線段上有個確定的點(包括端點與).現(xiàn)對這些點進行往返標數(shù)(從…進行標數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點上標,稱為點,然后從點開始數(shù)到第二個數(shù),標上,稱為點,再從點開始數(shù)到第三個數(shù),標上,稱為點(標上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標記到點上,則點上的所有標記的數(shù)中,最小的是_______.12.在銳角中,角、、所對的邊為、、,若的面積為,且,,則的弧度為__________.13.計算:=_______________.14.已知的三邊分別是,且面積,則角__________.15.數(shù)列的前項和,則__________.16.在數(shù)列中,,,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內(nèi)角A,B,C的對邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長.18.在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大??;(2)設,,的最大值為5,求k的值.20.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求方程的解構(gòu)成的集合.21.設等差數(shù)列的公差為d,前項和為,等比數(shù)列的公比為.已知,,,.(1)求數(shù)列,的通項公式;(2)當時,記,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
根據(jù)平面向量的基本定理,若平面內(nèi)任一向量都可以表示成的形式,構(gòu)成一個基底,所以向量不共線.【題目詳解】因為任一向量,根據(jù)平面向理的基本定理得,所以向量不共線,故A,C不正確.是一個基底,所以不能為零向量,故B不正確.因為不共線,且不能為零向量,所以若,當且僅當,故D正確.故選:D【題目點撥】本題主要考查平面向量的基本定理,還考查了理解辨析的能力,屬于基礎題.2、A【解題分析】
直角三角形滿足勾股定理,,再比較,,大小關系即可.【題目詳解】設直角三角形滿足,則,又為新三角形最長邊,所以所以最大角為銳角,所以三角形為銳角三角形.故選A【題目點撥】判斷三角形形狀一般可通過余弦定理判斷,若有一角的余弦值小于零則為鈍角三角形,等于零則為直角三角形,最大角的余弦值大于零則為銳角三角形,屬于較易題目.3、A【解題分析】
線性規(guī)劃問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值?!绢}目詳解】可行域如圖所示,當目標函數(shù)平移到A點時z取最小值,故選A【題目點撥】線性規(guī)劃中線性的目標函數(shù)問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值。4、B【解題分析】
先求出,再利用向量垂直的坐標表示得到關于的方程,從而求出.【題目詳解】因為,所以,因為,則,解得所以答案選B.【題目點撥】本題主要考查了平面向量的坐標運算,以及向量垂直的坐標表示,屬于基礎題.5、D【解題分析】
由對立事件的概念可知,直接寫出其對立事件即可.【題目詳解】“至少抽到2件次品”的對立事件為“至多抽到1件次品”,故選D【題目點撥】本題主要考查對立事件的概念,熟記對立事件的概念即可求解,屬于基礎題型.6、B【解題分析】
由等比數(shù)列的通項公式可得出.【題目詳解】解:由已知得,故選:B.【題目點撥】本題考查等比數(shù)列的通項公式的應用,是基礎題.7、A【解題分析】
計算部分數(shù)值,歸納得到,計算得到答案.【題目詳解】;;;…歸納總結(jié):故故選:【題目點撥】本題考查了數(shù)列的歸納推理,意在考查學生的推理能力.8、C【解題分析】
試題分析:可采用排除法,令和,驗證選項,只有,使得,故選C.考點:數(shù)列的通項公式.9、C【解題分析】
本題首先可以根據(jù)直角三角形的三邊長求出三角形的內(nèi)切圓半徑,然后分別計算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【題目詳解】如圖所示,直角三角形的斜邊長為,設內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【題目點撥】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.10、D【解題分析】分析:根據(jù)頻率分布直方圖可得測試成績落在中的頻率,從而可得結(jié)果.詳解:由頻率分布直方圖可得測試成績落在中的頻率為,所以測試成績落在中的人數(shù)為,,故選D.點睛:本題主要考查頻率分布直方圖的應用,屬于中檔題.直觀圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為;(2)組距與直方圖縱坐標的乘積為該組數(shù)據(jù)的頻率.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,則,令,即可得.【題目詳解】依照題意知,標有2的是1+2,標有3的是1+2+3,……,標有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,,令,,解得,故點上的所有標記的數(shù)中,最小的是3.【題目點撥】本題主要考查利用合情推理,分析解決問題的能力.意在考查學生的邏輯推理能力,12、【解題分析】
利用三角形的面積公式求出的值,結(jié)合角為銳角,可得出角的弧度數(shù).【題目詳解】由三角形的面積公式可知,的面積為,得,為銳角,因此,的弧度數(shù)為,故答案為.【題目點撥】本題考查三角形面積公式的應用,考查運算求解能力,屬于基礎題.13、【解題分析】試題分析:考點:兩角和的正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關鍵.14、【解題分析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.15、【解題分析】
根據(jù)數(shù)列前項和的定義即可得出.【題目詳解】解:因為所以.故答案為:.【題目點撥】考查數(shù)列的定義,以及數(shù)列前項和的定義,屬于基礎題.16、16【解題分析】
依次代入即可求得結(jié)果.【題目詳解】令,則;令,則;令,則;令,則本題正確結(jié)果:【題目點撥】本題考查根據(jù)數(shù)列的遞推公式求解數(shù)列中的項,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解題分析】
(1)由正弦定理將邊化為對應角的正弦值,即可求出結(jié)果;(2)由余弦定理和三角形的面積公式聯(lián)立,即可求出結(jié)果.【題目詳解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面積為.的周長為5+.【題目點撥】本題主要考查正弦定理和余弦定理解三角形,屬于基礎題型.18、(1)(2)【解題分析】
(1)利用條件求數(shù)列的首項與公比,確定所求.(2)將分組,,再利用等比數(shù)列前n項和公式求和【題目詳解】解:(1)設等比數(shù)列的公比為,所以,由,所以,則;(2),所以數(shù)列的前項和,則數(shù)列的前項和.【題目點撥】本題考查等比數(shù)列的通項,分組求和法,考查計算能力,屬于中檔題.19、(1),(2)【解題分析】
解:(1)(3分)又在中,,所以,則………(5分)(2),.………………(8分)又,所以,所以.所以當時,的最大值為.………(10分)………(12分)20、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)利用二倍角公式化簡函數(shù),再逆用兩角和的正弦公式進一步化簡函數(shù),代入最小正周期公式即可得解;(Ⅱ)由得,則,求解x并寫成集合形式.【題目詳解】(Ⅰ),所以函數(shù)的最小正周期.(Ⅱ)由得,,解得因此方程的解構(gòu)成的集合是:.【題目點撥】本題考查簡單的三角恒等變換,已知三角函數(shù)值求角的集合,屬于基礎題.21、(1)見解析(2)【解題分析】
(1)利用前10項和與首項、公差的關系,聯(lián)立方程組計算即可;(2)當d>1時,由(1)知cn,寫出Tn、Tn的表達式,利用錯位相減法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市保障性住房買賣合同示例
- 個人消費借款抵押擔保合同
- 交通事故責任劃分合同協(xié)議
- 個人資產(chǎn)轉(zhuǎn)讓合同范例
- 交通銀行外匯融資合同樣本
- 中小學學生校園意外傷害賠償合同范本
- 國內(nèi)運輸代理合同模板
- 銷售保健品合同范本
- 設備試用協(xié)議合同
- 個人資金借貸合同范本
- 韓國《寄生蟲》電影鑒賞解讀
- 三對三籃球賽記錄表
- 礦山電工知識點講解
- 物業(yè)公司服務質(zhì)量檢查流程
- 中國心胸外科的歷史和現(xiàn)狀
- 人教版9年級全一冊英語單詞表
- 三門峽水利工程案例分析工程倫理
- 中國旅游地理區(qū)劃-京津冀旅游區(qū)
- “1+X”證書制度試點職業(yè)技能等級證書全名錄
- 《社會主義市場經(jīng)濟理論(第三版)》第八章社會主義市場經(jīng)濟調(diào)控論
- 水土保持單元工程質(zhì)量評定表
評論
0/150
提交評論