2024屆浙江省湖州市長興縣、德清縣、安吉縣三縣數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第1頁
2024屆浙江省湖州市長興縣、德清縣、安吉縣三縣數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第2頁
2024屆浙江省湖州市長興縣、德清縣、安吉縣三縣數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第3頁
2024屆浙江省湖州市長興縣、德清縣、安吉縣三縣數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第4頁
2024屆浙江省湖州市長興縣、德清縣、安吉縣三縣數(shù)學(xué)高一下期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省湖州市長興縣、德清縣、安吉縣三縣數(shù)學(xué)高一下期末質(zhì)量檢測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,為坐標(biāo)原點(diǎn),則的外接圓方程是()A. B.C. D.2.已知與之間的一組數(shù)據(jù)如表,若與的線性回歸方程為,則的值為A.1 B.2 C.3 D.43.已知,,,則的取值范圍是()A. B. C. D.4.平面平面,直線,,那么直線與直線的位置關(guān)系一定是()A.平行 B.異面 C.垂直 D.不相交5.設(shè),滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.3 B. C.1 D.6.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時(shí)間為40秒,若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為()A. B. C. D.7.在三棱柱中,平面,,,,E,F(xiàn)分別是,上的點(diǎn),則三棱錐的體積為()A.6 B.12 C.24 D.368.己知函數(shù)(,,,)的圖象(部分)如圖所示,則的解析式是()A. B.C. D.9.已知,若關(guān)于的不等式的解集中的整數(shù)恰有3個,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.在中,角A,B,C所對的邊分別為a,b,c,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角α的終邊與單位圓交于點(diǎn).則___________.12.若,且,則__________.13.已知圓的圓心在直線,與y軸相切,且被直線截得的弦長為,則圓C的標(biāo)準(zhǔn)方程為________.14.某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).15.若無窮數(shù)列的所有項(xiàng)都是正數(shù),且滿足,則______.16.等差數(shù)列的前項(xiàng)和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前15項(xiàng)和.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,、分別是棱,的中點(diǎn),求證:(1)平面;(2)平面平面.18.設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.(1)求點(diǎn)P的軌跡方程;(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.19.對于三個實(shí)數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實(shí)數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實(shí)數(shù),點(diǎn)()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.20.如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面.(1)求證:;(2)若圓柱的體積,①求三棱錐A1﹣APB的體積.②在線段AP上是否存在一點(diǎn)M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.21.我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.(1)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù)說明理由;(2)估計(jì)居民月均用水量的中位數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】

根據(jù)圓的幾何性質(zhì)判斷出是直徑,由此求得圓心坐標(biāo)和半徑,進(jìn)而求得三角形外接圓的方程.【題目詳解】由于直角對的弦是直徑,故是圓的直徑,所以圓心坐標(biāo)為,半徑為,所以圓的標(biāo)準(zhǔn)方程為,化簡得,故選A.【題目點(diǎn)撥】本小題主要考查三角形外接圓的方程的求法,考查圓的幾何性質(zhì),屬于基礎(chǔ)題.2、D【解題分析】

先求出樣本中心點(diǎn),代入回歸直線方程,即可求得的值,得到答案.【題目詳解】由題意,根據(jù)表中的數(shù)據(jù),可得,又由回歸直線方程過樣本中心點(diǎn),所以,解得,故選D.【題目點(diǎn)撥】本題主要考查了線性回歸直線方程的應(yīng)用,其中解答中熟記線性回歸直線方程的基本特征是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、D【解題分析】

根據(jù)所給等式,用表示出,代入中化簡,令并構(gòu)造函數(shù),結(jié)合函數(shù)的圖像與性質(zhì)即可求得的取值范圍.【題目詳解】因?yàn)椋?,由解得,因?yàn)?,所以,則由可得,令,.所以畫出,的圖像如下圖所示:由圖像可知,函數(shù)在內(nèi)的值域?yàn)?,即的取值范圍為,故選:D.【題目點(diǎn)撥】本題考查了由等式求整式的取值范圍問題,打勾函數(shù)的圖像與性質(zhì)應(yīng)用,注意若使用基本不等式,注意等號成立條件及自變量取值范圍影響,屬于中檔題.4、D【解題分析】

利用空間中線線、線面、面面的位置關(guān)系得出直線與直線沒有公共點(diǎn).【題目詳解】由題平面平面,直線,則直線與直線的位置關(guān)系平行或異面,即兩直線沒有公共點(diǎn),不相交.故選D.【題目點(diǎn)撥】本題考查空間中兩條直線的位置關(guān)系,屬于簡單題.5、C【解題分析】

作出不等式組對應(yīng)的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【題目詳解】作出不等式組對應(yīng)的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當(dāng)直線經(jīng)過點(diǎn)時(shí),最大.,解得,即,所以的最大值為1.故答案為選C【題目點(diǎn)撥】本題給出二元一次不等式組,求目標(biāo)函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.6、B【解題分析】試題分析:因?yàn)榧t燈持續(xù)時(shí)間為40秒,所以這名行人至少需要等待15秒才出現(xiàn)綠燈的概率為,故選B.【考點(diǎn)】幾何概型【名師點(diǎn)睛】對于幾何概型的概率公式中的“測度”要有正確的認(rèn)識,它只與大小有關(guān),而與形狀和位置無關(guān),在解題時(shí),要掌握“測度”為長度、面積、體積、角度等常見的幾何概型的求解方法.7、B【解題分析】

等體積法:.求出的面積和F到平面的距離,代入公式即可.【題目詳解】由題意可得,的面積為,因?yàn)?,,平面ABC,所以點(diǎn)C到平面的距離為,即點(diǎn)F到平面的距離為4,則三棱錐的體積為.故三棱錐的體積為12.【題目點(diǎn)撥】此題考察了三棱錐體積的等體積法,通過變化頂點(diǎn)和底面進(jìn)行轉(zhuǎn)化,屬于較易題目.8、C【解題分析】

根據(jù)圖象可知,利用正弦型函數(shù)可求得;根據(jù)最大值和最小值可確定,利用及可求得,從而得到函數(shù)解析式.【題目詳解】由圖象可知,的最小正周期:又又,且,,即,本題正確選項(xiàng):【題目點(diǎn)撥】本題考查根據(jù)圖象求解三角函數(shù)解析式的問題,關(guān)鍵是能夠明確由最大值和最小值確定;由周期確定;通常通過最值點(diǎn)來進(jìn)行求解,屬于??碱}型.9、A【解題分析】

將不等式化為,可知滿足不等式,不滿足不等式,由此可確定個整數(shù)解為;當(dāng)和時(shí),解不等式可知不滿足題意;當(dāng)時(shí),解出不等式的解集,要保證整數(shù)解為,則需,解不等式組求得結(jié)果.【題目詳解】由得:當(dāng)時(shí),成立必為不等式的一個整數(shù)解當(dāng)時(shí),不成立不是不等式的整數(shù)解個整數(shù)解分別為:當(dāng)時(shí),,不滿足題意當(dāng)時(shí),解不等式得:或不等式不可能只有個整數(shù)解,不滿足題意當(dāng)時(shí),,解得:,即的取值范圍為:本題正確選項(xiàng):【題目點(diǎn)撥】本題考查根據(jù)不等式整數(shù)解的個數(shù)求解參數(shù)范圍問題,關(guān)鍵是能夠利用特殊值確定整數(shù)解的具體取值,從而解不等式,根據(jù)整數(shù)解的取值來確定解集的上下限,構(gòu)造不等式組求得結(jié)果.10、B【解題分析】

利用正弦定理邊化角,結(jié)合和差公式以及誘導(dǎo)公式,即可得到本題答案.【題目詳解】因?yàn)椋?,,,,?故選:B.【題目點(diǎn)撥】本題主要考查利用正弦定理邊角轉(zhuǎn)化求角,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

直接利用三角函數(shù)的坐標(biāo)定義求解.【題目詳解】由題得.故答案為【題目點(diǎn)撥】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、【解題分析】根據(jù)三角函數(shù)恒等式,將代入得到,又因?yàn)椋实玫焦蚀鸢笧椤?3、或【解題分析】

由圓心在直線x﹣3y=0上,設(shè)出圓心坐標(biāo),再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標(biāo)的絕對值等于圓的半徑,表示出半徑r,距離d,由圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標(biāo)和半徑,根據(jù)圓心和半徑寫出圓的方程即可.【題目詳解】設(shè)圓心為(3t,t),半徑為r=|3t|,則圓心到直線y=x的距離d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圓心是(3,1)或(-3,-1)故答案為或.【題目點(diǎn)撥】本題綜合考查了垂徑定理,勾股定理及點(diǎn)到直線的距離公式.根據(jù)題意設(shè)出圓心坐標(biāo),找出圓的半徑是解本題的關(guān)鍵.14、1.76【解題分析】

將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.【考點(diǎn)】中位數(shù)的概念【題目點(diǎn)撥】本題主要考查中位數(shù)的概念,是一道基礎(chǔ)題目.從歷年高考題目看,涉及統(tǒng)計(jì)的題目,往往不難,主要考查考生的視圖、用圖能力,以及應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.15、【解題分析】

先由作差法求出數(shù)列的通項(xiàng)公式為,即可計(jì)算出,然后利用常用數(shù)列的極限即可計(jì)算出的值.【題目詳解】當(dāng)時(shí),,可得;當(dāng)時(shí),由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【題目點(diǎn)撥】本題考查利用作差法求數(shù)列通項(xiàng),同時(shí)也考查了數(shù)列極限的計(jì)算,考查計(jì)算能力,屬于中等題.16、(1),;(2)125.【解題分析】

(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項(xiàng)為正,后面為負(fù),再計(jì)算數(shù)列的前15項(xiàng)和.【題目詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【題目點(diǎn)撥】本題考查了等差數(shù)列,等比數(shù)列,絕對值和,判斷數(shù)列的正負(fù)分界處是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)見證明【解題分析】

(1)設(shè)與的交點(diǎn)為,連結(jié),證明,再由線面平行的判定可得平面;(2)由為線段的中點(diǎn),點(diǎn)是的中點(diǎn),證得四邊形為平行四邊形,得到,進(jìn)一步得到平面.再由平面,結(jié)合面面平行的判定可得平面平面.【題目詳解】證明:(1)設(shè)與的交點(diǎn)為,連結(jié),∵四邊形為平行四邊形,∴為中點(diǎn),又是的中點(diǎn),∴是三角形的中位線,則,又∵平面,平面,∴平面;(2)∵為線段的中點(diǎn),點(diǎn)是的中點(diǎn),∴且,則四邊形為平行四邊形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【題目點(diǎn)撥】本題考查直線與平面,平面與平面平行的判定,考查空間想象能力與思維能力,是中檔題.18、(1);(2)見解析.【解題分析】

試題分析:(1)轉(zhuǎn)移法求軌跡:設(shè)所求動點(diǎn)坐標(biāo)及相應(yīng)已知動點(diǎn)坐標(biāo),利用條件列兩種坐標(biāo)關(guān)系,最后代入已知動點(diǎn)軌跡方程,化簡可得所求軌跡方程;(2)證明直線過定點(diǎn)問題,一般方法是以算代證:即證,先設(shè)P(m,n),則需證,即根據(jù)條件可得,而,代入即得.試題解析:解:(1)設(shè)P(x,y),M(),則N(),由得.因?yàn)镸()在C上,所以.因此點(diǎn)P的軌跡為.由題意知F(-1,0),設(shè)Q(-3,t),P(m,n),則,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又過點(diǎn)P存在唯一直線垂直于OQ,所以過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.點(diǎn)睛:定點(diǎn)、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點(diǎn)”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的.定點(diǎn)、定值問題同證明問題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).19、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解題分析】

(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【題目詳解】(1)①因?yàn)?,成?所以,故,0具有“性質(zhì)2”②因?yàn)?,設(shè),則設(shè),對稱軸為,所以函數(shù)在上單調(diào)遞減,當(dāng)時(shí),,所以當(dāng)時(shí),不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因?yàn)椋?具有“性質(zhì)2”所以化簡得解得或.因?yàn)榇嬖诩埃沟贸闪?,所以存在及使即?令,則,當(dāng)時(shí),,所以在上是增函數(shù),所以時(shí),,當(dāng)時(shí),,故時(shí),因?yàn)樵谏蠁握{(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實(shí)數(shù)中,一定存在兩個實(shí)數(shù),滿足:.證明:由,令,由萬能公式知,將等分成2018個小區(qū)間,則這2019個數(shù)必然有兩個數(shù)落在同一個區(qū)間,令其為:,即,也就是說,在,,,這2019個數(shù)中,一定有兩個數(shù)滿足,即一定存在兩個實(shí)數(shù),滿足,從而得證.【題目點(diǎn)撥】本題主要考查了不等式的證明,根據(jù)存在性問題求參數(shù)的取值范圍,三角函數(shù)的單調(diào)性,萬能公式,考查了創(chuàng)新能力,屬于難題.20、(1)見解析;(2)①,②見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論