2024屆湖南省衡陽市衡陽縣江山學校數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第1頁
2024屆湖南省衡陽市衡陽縣江山學校數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第2頁
2024屆湖南省衡陽市衡陽縣江山學校數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第3頁
2024屆湖南省衡陽市衡陽縣江山學校數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第4頁
2024屆湖南省衡陽市衡陽縣江山學校數(shù)學高一第二學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省衡陽市衡陽縣江山學校數(shù)學高一第二學期期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.2.如圖所示,已知以正方體所有面的中心為頂點的多面體的體積為,則該正方體的外接球的表面積為()A. B. C. D.3.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.4.變量滿足,目標函數(shù),則的最小值是()A. B.0 C.1 D.-15.已知,當取得最小值時()A. B. C. D.6.不論為何值,直線恒過定點A. B. C. D.7.直線的傾斜角大小()A. B. C. D.8.不等式x2+ax+4>0對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.9.從甲、乙等5名學生中隨機選出2人,則甲被選中的概率為()A. B.C. D.10.素數(shù)指整數(shù)在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果。哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如。在不超過15的素數(shù)中,隨機選取兩個不同的數(shù),其和小于18的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,是夾角為的兩個單位向量,向量,,若,則實數(shù)的值為________.12.已知數(shù)列從第項起每項都是它前面各項的和,且,則的通項公式是__________.13.等差數(shù)列前項和為,已知,,則_____.14.已知直線與圓相交于,兩點,則=______.15.兩個實習生加工一個零件,產(chǎn)品為一等品的概率分別為和,則這兩個零件中恰有一個一等品的概率為__________.16.若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某地合作農(nóng)場的果園進入盛果期,果農(nóng)利用互聯(lián)網(wǎng)電商渠道銷售蘋果,蘋果單果直徑不同則單價不同,為了更好的銷售,現(xiàn)從該合作農(nóng)場果園的蘋果樹上隨機摘下了50個蘋果測量其直徑,經(jīng)統(tǒng)計,其單果直徑分布在區(qū)間內(nèi)(單位:),統(tǒng)計的莖葉圖如圖所示:(Ⅰ)按分層抽樣的方法從單果直徑落在,的蘋果中隨機抽取6個,則從,的蘋果中各抽取幾個?(Ⅱ)從(Ⅰ)中選出的6個蘋果中隨機抽取2個,求這兩個蘋果單果直徑均在內(nèi)的概率;(Ⅲ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率,若該合作農(nóng)場的果園有20萬個蘋果約5萬千克待出售,某電商提出兩種收購方案:方案:所有蘋果均以5.5元/千克收購;方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個蘋果,定價收購方式為:單果直徑在內(nèi)按35元/箱收購,在內(nèi)按45元/箱收購,在內(nèi)按55元/箱收購.包裝箱與分揀裝箱費用為5元/箱(該費用由合作農(nóng)場承擔).請你通過計算為該合作農(nóng)場推薦收益最好的方案.18.已知正項數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.(1)求數(shù)列的通項公式;(2)若數(shù)列,求數(shù)列的前項和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實數(shù)的取值范圍.19.(Ⅰ)已知直線過點且與直線垂直,求直線的方程;(Ⅱ)求與直線的距離為的直線方程.20.已知等差數(shù)列滿足,.(1)求的通項公式;(2)設(shè)等比數(shù)列滿足.若,求的值.21.已知等差數(shù)列的前n項和為,關(guān)于x的不等式的解集為.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】,當時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.

故選D.【題目點撥】本題考查三角函數(shù)恒等變換,其中解題時問題轉(zhuǎn)化為求三角函數(shù)的值域并利用集合關(guān)系是解決問題的關(guān)鍵,2、A【解題分析】

設(shè)正方體的棱長為,則中間四棱錐的底面邊長為,由已知多面體的體積求解,得到正方體外接球的半徑,則外接球的表面積可求.【題目詳解】設(shè)正方體的棱長為,則中間四棱錐的底面邊長為,多面體的體積為,即.正方體的對角線長為.則正方體的外接球的半徑為.表面積為.故選:.【題目點撥】本題考查幾何體的體積的求法,考查空間想象能力以及計算能力,是基礎(chǔ)題.3、D【解題分析】

由,,,得解.【題目詳解】解:因為,,,所以,故選:D.【題目點撥】本題考查了指數(shù)冪,對數(shù)值的大小關(guān)系,屬基礎(chǔ)題.4、D【解題分析】

先畫出滿足條件的平面區(qū)域,將變形為:,平移直線得直線過點時,取得最小值,求出即可.【題目詳解】解:畫出滿足條件的平面區(qū)域,如圖示:

由得:,

平移直線,顯然直線過點時,最小,

由,解得:

∴最小值,

故選:D.【題目點撥】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.5、D【解題分析】

可用導(dǎo)函數(shù)解決最小值問題,即可得到答案.【題目詳解】根據(jù)題意,令,則,而當時,,當時,,則在處取得極小值,故選D.【題目點撥】本題主要考查函數(shù)的最值問題,意在考查學生利用導(dǎo)數(shù)工具解決實際問題的能力,難度中等.6、B【解題分析】

根據(jù)直線方程分離參數(shù),再由直線過定點的條件可得方程組,解方程組進而可得m的值.【題目詳解】恒過定點,恒過定點,由解得即直線恒過定點.【題目點撥】本題考查含有參數(shù)的直線過定點問題,過定點是解題關(guān)鍵.7、B【解題分析】

化簡得到,根據(jù)計算得到答案.【題目詳解】直線,即,,,故.故選:.【題目點撥】本題考查了直線的傾斜角,意在考查學生的計算能力.8、A【解題分析】

根據(jù)二次函數(shù)的性質(zhì)求解.【題目詳解】不等式x2+ax+4>0對任意實數(shù)x恒成立,則,∴.故選A.【題目點撥】本題考查一元二次不等式恒成立問題,解題時可借助二次函數(shù)的圖象求解.9、B【解題分析】試題分析:從甲乙等名學生中隨機選出人,基本事件的總數(shù)為,甲被選中包含的基本事件的個數(shù),所以甲被選中的概率,故選B.考點:古典概型及其概率的計算.10、B【解題分析】

找出不超過15的素數(shù),從其中任取2個共有多少種取法,找到取出的兩個和小于18的個數(shù),根據(jù)古典概型求解即可.【題目詳解】不超過15的素數(shù)為,共6個,任取2個分別為,,,,,,,,,,,,,,,共15個基本事件,其中兩個和小于18的共有11個基本事件,根據(jù)古典概型概率公式知.【題目點撥】本題主要考查了古典概型,基本事件,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由題意得,且,,由=,解得即可.【題目詳解】已知,是夾角為的兩個單位向量,所以,得,若解得故答案為【題目點撥】本題考查了向量數(shù)量積的運算性質(zhì),考查了計算能力,屬于基礎(chǔ)題.12、【解題分析】

列舉,可找到是從第項起的等比數(shù)列,由首項和公比即可得出通項公式.【題目詳解】解:,即,所以是從第項起首項,公比的等比數(shù)列.通項公式為:故答案為:【題目點撥】本題考查數(shù)列的通項公式,可根據(jù)遞推公式求出.13、1【解題分析】

首先根據(jù)、即可求出和,從而求出?!绢}目詳解】,①,②①②得,,即,∴,即,∴,故答案為:1.【題目點撥】本題主要考查了解方程,以及等差數(shù)列的性質(zhì)和前項和。其中等差數(shù)列的性質(zhì):若則比較??迹枥斫庹莆?。14、.【解題分析】

將圓的方程化為標準方程,由點到直線距離公式求得弦心距,再結(jié)合垂徑定理即可求得.【題目詳解】圓,變形可得所以圓心坐標為,半徑直線,變形可得由點到直線距離公式可得弦心距為由垂徑定理可知故答案為:【題目點撥】本題考查了直線與圓相交時的弦長求法,點到直線距離公式的應(yīng)用及垂徑定理的用法,屬于基礎(chǔ)題.15、【解題分析】

利用相互獨立事件概率乘法公式直接求解.【題目詳解】解:兩個實習生加工一個零件,產(chǎn)品為一等品的概率分別為和,這兩個零件中恰有一個一等品的概率為:.故答案為:.【題目點撥】本題考查概率的求法,考查相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.16、【解題分析】

令,可得,從而將問題轉(zhuǎn)化為和的圖象有兩個不同交點,作出圖形,可求出答案.【題目詳解】由題意,令,則,則和的圖象有兩個不同交點,作出的圖象,如下圖,是過點的直線,當直線斜率時,和的圖象有兩個交點.故答案為:.【題目點撥】本題考查函數(shù)零點問題,考查函數(shù)圖象的應(yīng)用,考查學生的計算求解能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)4個;(Ⅱ);(Ⅲ)方案是【解題分析】

(Ⅰ)單果直徑落在,,,的蘋果個數(shù)分別為6,12,分層抽樣的方法從單果直徑落在,,,的蘋果中隨機抽取6個,單果直徑落在,,,的蘋果分別抽取2個和4個;(Ⅱ)從這6個蘋果中隨機抽取2個,基本事件總數(shù),這兩個蘋果單果直徑均在,內(nèi)包含的基本事件個數(shù),由此能求出這兩個蘋果單果直徑均在,內(nèi)的概率;(Ⅲ)分別求出按方案與方案該合作農(nóng)場收益,比較大小得結(jié)論.【題目詳解】(Ⅰ)由莖葉圖可知,單果直徑落在,的蘋果分別為6個,12個,依題意知抽樣比為,所以單果直徑落在的蘋果抽取個數(shù)為個,單果直徑落在的蘋果抽取個數(shù)為個(Ⅱ)記單果直徑落在的蘋果為,,記單果直徑落在的蘋果為,若從這6個蘋果中隨機抽取2個,則所有可能結(jié)果為:,,,,,,,,,,,,,,,即基本事件的總數(shù)為15個.這兩個蘋果單果直徑均落在內(nèi)包含的基本事件個數(shù)為6個,所以這兩個蘋果單果直徑均落在內(nèi)的概率為.(Ⅲ)按方案:該合作農(nóng)場收益為:(萬元);按方案:依題意可知合作農(nóng)場的果園共有萬箱,即8000箱蘋果,則該合作農(nóng)場收益為:元,即為31.36萬元因為,所以為該合作農(nóng)場推薦收益最好的方案是.【題目點撥】本題考查概率、最佳方案的確定,考查莖葉圖等基礎(chǔ)知識,考查運算求解能力,是中檔題.18、(1);(2);(3).【解題分析】

(1)將點代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項公式可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求出數(shù)列的前項和;(3)利用分組求和法與裂項法求出數(shù)列的前項和,由題意得出,判斷出數(shù)列各項的符號,得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實數(shù)的取值范圍.【題目詳解】(1)將點代入函數(shù)的解析式得到.當時,,即,解得;當時,由得,上述兩式相減得,得,即.所以,數(shù)列是以為首項,以為公比的等比數(shù)列,因此,;(2),,因此,①,②由①②得,所以;(3).令為的前項和,則.因為,,,,當時,,令,,令,則,當時,,此時,數(shù)列為單調(diào)遞減數(shù)列,,則,即,那么當時,數(shù)列為單調(diào)遞減數(shù)列,此時,則.因此,數(shù)列的最大值為.又,函數(shù)單調(diào)遞增,此時,函數(shù)的最大值為.因為對任意的,存在,.所以,解得,因此,實數(shù)的取值范圍是.【題目點撥】本題考查利用等比數(shù)列前項和求數(shù)列通項,同時也考查了錯位相減法求和以及數(shù)列不等式恒成立問題,解題時要充分利用數(shù)列的單調(diào)性求出數(shù)列的最大項或最小項的值,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于難題.19、(Ⅰ);(Ⅱ)或.【解題分析】

(Ⅰ)根據(jù)直線與直線垂直,求得直線的斜率為,再利用直線的點斜式方程,即可求解;(Ⅱ)設(shè)所求直線方程為,由點到直線的距離公式,列出方程,求得的值,即可得到答案.【題目詳解】(Ⅰ)由題意,設(shè)所求直線的斜率為,由直線的斜率為,因為直線與直線垂直,所以直線的斜率為,所以所求直線的方程為直線的方程為:,即.(Ⅱ)設(shè)所求直線方程為,即,直線上任取一點,由點到直線的距離公式,可得,解得或-4,所以所求直線方程為:或.【題目點撥】本題主要考查了直線方程的求解,兩直線的位置關(guān)系的應(yīng)用,以及點到直線的距離公式的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1);(2)63【解題分析】

(1)求出公差和首項,可得通項公式;(2)由得公比,再得,結(jié)合通項公式求得.【題目詳解】(1)由題意等差數(shù)列的公差,,,∴;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論