2024屆浙江省金華市數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆浙江省金華市數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆浙江省金華市數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆浙江省金華市數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆浙江省金華市數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省金華市數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若扇形的面積為、半徑為1,則扇形的圓心角為()A. B. C. D.2.已知向量,且,則()A.2 B. C. D.3.某幾何體的三視圖如圖所示,它的體積為()A.12π B.45π C.57π D.81π4.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.495.下列關(guān)于函數(shù)()的敘述,正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.值域?yàn)镃.圖像關(guān)于點(diǎn)中心對(duì)稱D.不等式的解集為6.平面內(nèi)任一向量都可以表示成的形式,下列關(guān)于向量的說法中正確的是()A.向量的方向相同 B.向量中至少有一個(gè)是零向量C.向量的方向相反 D.當(dāng)且僅當(dāng)時(shí),7.如圖,長方體中,,,那么異面直線與所成角的余弦值是()A. B. C. D.8.若實(shí)數(shù)a>b,則下列結(jié)論成立的是()A.a(chǎn)2>b2 B. C.ln2a>ln2b D.a(chǎn)x2>bx29.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.10.已知,,,則的大小關(guān)系為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,(且),則數(shù)列的通項(xiàng)公式為________.12.已知數(shù)列的通項(xiàng)公式,則____________.13.若,則____________.14.設(shè)集合,它共有個(gè)二元子集,如、、等等.記這個(gè)二元子集為、、、、,設(shè),定義,則_____.(結(jié)果用數(shù)字作答)15.經(jīng)過兩圓和的交點(diǎn)的直線方程為______.16.函數(shù)的單調(diào)增區(qū)間是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.18.設(shè)遞增數(shù)列共有項(xiàng),定義集合,將集合中的數(shù)按從小到大排列得到數(shù)列;(1)若數(shù)列共有4項(xiàng),分別為,,,,寫出數(shù)列的各項(xiàng)的值;(2)設(shè)是公比為2的等比數(shù)列,且,若數(shù)列的所有項(xiàng)的和為4088,求和的值;(3)若,求證:為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng);19.如圖,在四邊形中,已知,,(1)若,且的面積為,求的面積:(2)若,求的最大值.20.已知非零數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)若關(guān)于的不等式有解,求整數(shù)的最小值;(3)在數(shù)列中,是否存在首項(xiàng)、第項(xiàng)、第項(xiàng)(),使得這三項(xiàng)依次構(gòu)成等差數(shù)列?若存在,求出所有的;若不存在,請(qǐng)說明理由.21.如圖,四棱錐中,底面為矩形,面,為的中點(diǎn).(1)證明:平面;(2)設(shè),,三棱錐的體積,求A到平面PBC的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】設(shè)扇形的圓心角為α,則∵扇形的面積為,半徑為1,

∴故選B2、B【解題分析】

根據(jù)向量平行得到,再利用和差公式計(jì)算得到答案.【題目詳解】向量,且,則..故選:.【題目點(diǎn)撥】本題考查了向量平行求參數(shù),和差公式,意在考查學(xué)生的綜合應(yīng)用能力.3、C【解題分析】由三視圖可知,此組合體上部是一個(gè)母線長為5,底面圓半徑是3的圓錐,下部是一個(gè)高為5,底面半徑是3的圓柱故它的體積是5×π×32+π×32×=57π故選C4、C【解題分析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因?yàn)閳A心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點(diǎn)時(shí),取得最大值,B點(diǎn)的坐標(biāo)為,即時(shí)是最大值.考點(diǎn):線性規(guī)劃綜合問題.5、D【解題分析】

運(yùn)用正弦函數(shù)的一個(gè)周期的圖象,結(jié)合單調(diào)性、值域和對(duì)稱中心,以及不等式的解集,可得所求結(jié)論.【題目詳解】函數(shù)(),在,單調(diào)遞增,在上單調(diào)遞減;值域?yàn)?;圖象關(guān)于點(diǎn)對(duì)稱;由可得,解得:.故選:D.【題目點(diǎn)撥】本題考查三角函數(shù)的圖象和性質(zhì),考查邏輯思維能力和運(yùn)算能力,屬于常考題.6、D【解題分析】

根據(jù)平面向量的基本定理,若平面內(nèi)任一向量都可以表示成的形式,構(gòu)成一個(gè)基底,所以向量不共線.【題目詳解】因?yàn)槿我幌蛄?,根?jù)平面向理的基本定理得,所以向量不共線,故A,C不正確.是一個(gè)基底,所以不能為零向量,故B不正確.因?yàn)椴还簿€,且不能為零向量,所以若,當(dāng)且僅當(dāng),故D正確.故選:D【題目點(diǎn)撥】本題主要考查平面向量的基本定理,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、A【解題分析】

可證得四邊形為平行四邊形,得到,將所求的異面直線所成角轉(zhuǎn)化為;假設(shè),根據(jù)角度關(guān)系可求得的三邊長,利用余弦定理可求得余弦值.【題目詳解】連接,四邊形為平行四邊形異面直線與所成角即為與所成角,即設(shè),,,,在中,由余弦定理得:異面直線與所成角的余弦值為:本題正確選項(xiàng):【題目點(diǎn)撥】本題考查異面直線所成角的求解問題,關(guān)鍵是能夠通過平行關(guān)系將問題轉(zhuǎn)化為相交直線所成角,在三角形中利用余弦定理求得余弦值.8、C【解題分析】

特值法排除A,B,D,單調(diào)性判斷C【題目詳解】由題意,可知:對(duì)于A:當(dāng)a、b都是負(fù)數(shù)時(shí),很明顯a2<b2,故選項(xiàng)A不正確;對(duì)于B:當(dāng)a為正數(shù),b為負(fù)數(shù)時(shí),則有,故選項(xiàng)B不正確;對(duì)于C:∵a>b,∴2a>2b>0,∴l(xiāng)n2a>ln2b,故選項(xiàng)C正確;對(duì)于D:當(dāng)x=0時(shí),結(jié)果不成立,故選項(xiàng)D不正確;故選:C.【點(diǎn)評(píng)】本題主要考查不等式的性質(zhì)應(yīng)用,特殊值技巧的應(yīng)用,指數(shù)函數(shù)、對(duì)數(shù)函數(shù)值大小的比較.本題屬中檔題.9、A【解題分析】

因?yàn)楹瘮?shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對(duì)稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.10、B【解題分析】

根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可知都大于1,把化成后可得的大小,從而可得的大小關(guān)系.【題目詳解】因?yàn)榧岸际巧系脑龊瘮?shù),故,,又,故,選B.【題目點(diǎn)撥】對(duì)數(shù)的大小比較,可通過尋找合適的單調(diào)函數(shù)來構(gòu)建大小關(guān)系,如果底數(shù)不統(tǒng)一,可以利用對(duì)數(shù)的運(yùn)算性質(zhì)統(tǒng)一底數(shù).不同類型的數(shù)比較大小,應(yīng)找一個(gè)中間數(shù),通過它實(shí)現(xiàn)大小關(guān)系的傳遞.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用累加法和裂項(xiàng)求和得到答案.【題目詳解】當(dāng)時(shí)滿足故答案為【題目點(diǎn)撥】本題考查了數(shù)列的累加法,裂項(xiàng)求和法,意在考查學(xué)生對(duì)于數(shù)列公式和方法的靈活運(yùn)用.12、【解題分析】

將代入即可求解【題目詳解】令,可得.故答案為:【題目點(diǎn)撥】本題考查求數(shù)列的項(xiàng),是基礎(chǔ)題13、【解題分析】故答案為.14、1835028【解題分析】

分別分析中二元子集中較大元素分別為、、、時(shí),對(duì)應(yīng)的二元子集中較小的元素,再利用題中的定義結(jié)合數(shù)列求和思想求出結(jié)果.【題目詳解】當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、、、.由題意可得,令,得,上式下式得,化簡得,因此,,故答案為:.【題目點(diǎn)撥】本題考查新定義,同時(shí)也考查了數(shù)列求和,解題的關(guān)鍵就是找出相應(yīng)的規(guī)律,列出代數(shù)式進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于難題.15、【解題分析】

利用圓系方程,求解即可.【題目詳解】設(shè)兩圓和的交點(diǎn)分別為,則線段是兩個(gè)圓的公共弦.令,,兩式相減,得,即,故線段所在直線的方程為.【題目點(diǎn)撥】本題考查圓系方程的應(yīng)用,考查計(jì)算能力.16、,【解題分析】

先利用誘導(dǎo)公式化簡,即可由正弦函數(shù)的單調(diào)性求出?!绢}目詳解】因?yàn)?,所以的單調(diào)增區(qū)間是,?!绢}目點(diǎn)撥】本題主要考查誘導(dǎo)公式以及正弦函數(shù)的性質(zhì)——單調(diào)性的應(yīng)用。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)設(shè)等差數(shù)列{an}的公差為d,由已知條件可得,解得,故數(shù)列{an}的通項(xiàng)公式為an=2-n.(2)設(shè)數(shù)列的前n項(xiàng)和為Sn,∵,∴Sn=-記Tn=,①則Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.18、(1),,,,;(2),;(3)證明見解析;【解題分析】

(1)根據(jù)題意從小到大計(jì)算中的值即可.(2)易得數(shù)列的所有項(xiàng)的和等于中的每個(gè)項(xiàng)重復(fù)加了次,再根據(jù)等比數(shù)列求和即可.(3)分別證明當(dāng)時(shí),若為等差數(shù)列則數(shù)列恰有7項(xiàng)以及當(dāng)數(shù)列恰有7項(xiàng)證明為等差數(shù)列即可.【題目詳解】(1)易得當(dāng),,,時(shí),,,,,.(2)若是公比為2的等比數(shù)列,且,則數(shù)列的所有項(xiàng)的和等于中每一項(xiàng)重復(fù)加了次,故.即,又,故,易得隨著的增大而增大.當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),故,此時(shí).(3)證明:先證明充分性:若,且為等差數(shù)列,不妨設(shè),則數(shù)列也為等差數(shù)列為的等差數(shù)列.且最小值為,最大值為.故數(shù)列恰有7項(xiàng).再證明必要性:若數(shù)列恰有7項(xiàng).則因?yàn)?故的7項(xiàng)分別為.又,可得,即.同理有,故為等差數(shù)列.綜上可知,若,則為等差數(shù)列的充要條件是數(shù)列恰有7項(xiàng)【題目點(diǎn)撥】本題主要考查了數(shù)列綜合運(yùn)用,需要根據(jù)題意分析與的關(guān)系,將中的通項(xiàng)用中的項(xiàng)表達(dá),再計(jì)算即可.同時(shí)也考查了推理證明的能力.屬于難題.19、(1);(2)3【解題分析】

(1)根據(jù)可解出,驗(yàn)證出,從而求得所求面積;(2)設(shè),,在中利用余弦定理構(gòu)造關(guān)于的方程;在中分別利用正余弦定理可得到和,代入可求得;根據(jù)三角函數(shù)最值可求得的最大值,即可得到結(jié)果.【題目詳解】(1)由得:,即(2)設(shè),在中,由正弦定理得:…①由余弦定理得:…②在中,由余弦定理得:將①②代入整理得:當(dāng),即時(shí),取最大值【題目點(diǎn)撥】本題考查解三角形的相關(guān)知識(shí),涉及到正弦定理、余弦定理和三角形面積公式的應(yīng)用;本題中線段長度最值的求解的關(guān)鍵是能夠利用正余弦定理構(gòu)造方程,將問題轉(zhuǎn)化為三角函數(shù)最值的求解問題.20、(1)證明見解析;(2);(3)存在,或.【解題分析】

(1)由條件可得,即,再由等比數(shù)列的定義即可得證;

(2)由等比數(shù)列的通項(xiàng)公式求得,,再由數(shù)列的單調(diào)性的判斷,可得最小值,解不等式即可得到所求最小值;

(3)假設(shè)存在首項(xiàng)、第項(xiàng)、第項(xiàng)(),使得這三項(xiàng)依次構(gòu)成等差數(shù)列,由等差數(shù)列的中項(xiàng)的性質(zhì)和恒等式的性質(zhì),可得,的方程,解方程可得所求值.【題目詳解】解:(1)證明:由,

得,即,

所以數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;

(2)由(1)可得,,則

故,

設(shè),

則,

所以單調(diào)遞增,

則,于是,即,

故整數(shù)的最小值為;

(3)由上面得,,

設(shè),

要使得成等差數(shù)列,即,

即,

得,

,

故為偶數(shù),為奇數(shù),

或.【題目點(diǎn)撥】本題考查等比數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查不等式恒成立問題的解法,注意運(yùn)用函數(shù)的單調(diào)性求得最值,考查存在性問題的解法,注意運(yùn)用恒等式的性質(zhì),是一道難度較大的題目.21、(1)證明見解析(2)到平面的距離為【解題分析】

試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論