2024屆吉林省北大附屬長春實驗學(xué)校數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第1頁
2024屆吉林省北大附屬長春實驗學(xué)校數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第2頁
2024屆吉林省北大附屬長春實驗學(xué)校數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第3頁
2024屆吉林省北大附屬長春實驗學(xué)校數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第4頁
2024屆吉林省北大附屬長春實驗學(xué)校數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆吉林省北大附屬長春實驗學(xué)校數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量a=(2,1),a?b=10,A.5 B.10 C.5 D.252.在中,若,則的面積為().A.8 B.2 C. D.43.已知則的最小值是()A. B.4 C. D.54.圓心為的圓與圓相外切,則圓的方程為()A. B.C. D.5.的內(nèi)角的對邊分別為成等比數(shù)列,且,則等于()A. B. C. D.6.某學(xué)生用隨機模擬的方法推算圓周率的近似值,在邊長為的正方形內(nèi)有一內(nèi)切圓,向正方形內(nèi)隨機投入粒芝麻,(假定這些芝麻全部落入該正方形中)發(fā)現(xiàn)有粒芝麻落入圓內(nèi),則該學(xué)生得到圓周率的近似值為()A. B. C. D.7.設(shè),則下列結(jié)論正確的是()A. B. C. D.8.已知下列各命題:①兩兩相交且不共點的三條直線確定一個平面:②若真線不平行于平面,則直線與平面有公共點:③若兩個平面垂直,則一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線:④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角相等或互補.則其中正確的命題共有()個A. B. C. D.9.已知點、、在圓上運動,且,若點的坐標為,的最大值為()A. B. C. D.10.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的零點的個數(shù)是______.12.在中,角所對的邊為,若,且的外接圓半徑為,則________.13.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.14.在中,角,,的對邊分別為,,,若,則________.15.若數(shù)列滿足,,則數(shù)列的通項公式______.16.若兩個正實數(shù)滿足,且不等式有解,則實數(shù)的取值范圍是____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知關(guān)于的不等式.(1)若不等式的解集為,求;(2)當時,解此不等式.18.在平面直角坐標系中,點是坐標原點,已知點為線段上靠近點的三等分點.求點的坐標:若點在軸上,且直線與直線垂直,求點的坐標.19.做一個體積為,高為2m的長方體容器,問底面的長和寬分別為多少時,所用的材料表面積最少?并求出其最小值.20.在已知數(shù)列中,,.(1)若數(shù)列中,,求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列、的前項和分別為、,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出的值;若不存在,請說明理由.21.已知向量,.求:(1);(2)與的夾角的余弦值;(3)求的值使與為平行向量.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

將|a+b2、C【解題分析】

由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【題目詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【題目點撥】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運算能力.3、C【解題分析】

由題意結(jié)合均值不等式的結(jié)論即可求得的最小值,注意等號成立的條件.【題目詳解】由題意可得:,當且僅當時等號成立.即的最小值是.故選:C.【題目點撥】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.4、A【解題分析】

求出圓的圓心坐標和半徑,利用兩圓相外切關(guān)系,可以求出圓的半徑,求出圓的標準方程,最后化為一般式方程.【題目詳解】設(shè)的圓心為A,半徑為r,圓C的半徑為R,,所以圓心A坐標為,半徑r為3,圓心距為,因為兩圓相外切,所以有,故圓的標準方程為:,故本題選A.【題目點撥】本題考查了圓與圓的相外切的性質(zhì),考查了已知圓的方程求圓心坐標和半徑,考查了數(shù)學(xué)運算能力.5、B【解題分析】

成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【題目詳解】解:成等比數(shù)列,,又,,則故選B.【題目點撥】本題考查了等比數(shù)列的性質(zhì)、余弦定理,考查了推理能力與計算能力,屬于中檔題.6、B【解題分析】

由落入圓內(nèi)的芝麻數(shù)占落入正方形區(qū)域內(nèi)的芝麻數(shù)的比例等于圓的面積與正方形的面積比相等,列等式求出的近似值.【題目詳解】邊長為的正方形內(nèi)有一內(nèi)切圓的半徑為,圓的面積為,正方形的面積為,由幾何概型的概率公式可得,得,因此,該學(xué)生得到圓周率的近似值為,故選:B.【題目點撥】本題考查利用隨機模擬思想求圓周率的近似值,解題的關(guān)鍵就是利用概率相等結(jié)合幾何概型的概率公式列等式求解,考查計算能力,屬于基礎(chǔ)題.7、B【解題分析】

利用不等式的性質(zhì),即可求解,得到答案.【題目詳解】由題意知,根據(jù)不等式的性質(zhì),兩邊同乘,可得成立.故選:B.【題目點撥】本題主要考查了不等式的性質(zhì)及其應(yīng)用,其中解答中熟記不等式的基本性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解題分析】

①利用平面的基本性質(zhì)判斷.②利用直線與平面的位置關(guān)系判斷.③由面面垂直的性質(zhì)定理判斷.④通過舉反例來判斷.【題目詳解】①兩兩相交且不共點,形成三個不共線的點,確定一個平面,故正確.②若真線不平行于平面,則直線與平面相交或在平面內(nèi),所以有公共點,故正確.③若兩個平面垂直,則一個平面內(nèi),若垂直交線的直線則垂直另一個平面,垂直另一平面內(nèi)所有直線,若不垂直與交線,也與另一平面內(nèi)垂直交線的直線及其平行線垂直,也有無數(shù)條,故正確.④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角關(guān)系不確定,如圖:在正方體ABCD-A1B1C1D1中,二面角D-AA1-F與二面角D1-DC-A的兩個半平面就是分別對應(yīng)垂直的,但是這兩個二面角既不相等,也不互補.故錯誤..故選:B【題目點撥】本題主要考查了點、線、面的位置關(guān)系,還考查了推理論證和理解辨析的能力,屬于基礎(chǔ)題.9、C【解題分析】

由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【題目詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),由平面向量模的三角不等式可得,當且僅當點的坐標為時,等號成立,因此,的最大值為.故選:C.【題目點撥】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.10、A【解題分析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【題目詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【題目點撥】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

在同一直角坐標系內(nèi)畫出函數(shù)與函數(shù)的圖象,利用數(shù)形結(jié)合思想可得出結(jié)論.【題目詳解】在同一直角坐標系內(nèi)畫出函數(shù)與函數(shù)的圖象如下圖所示:由圖象可知,函數(shù)與函數(shù)的圖象的交點個數(shù)為,因此,函數(shù)的零點個數(shù)為.故答案為:.【題目點撥】本題考查函數(shù)零點個數(shù)的判斷,在判斷函數(shù)的零點個數(shù)時,一般轉(zhuǎn)化為對應(yīng)方程的根,或轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.12、或.【解題分析】

利用正弦定理求出的值,結(jié)合角的取值范圍得出角的值.【題目詳解】由正弦定理可得,所以,,,或,故答案為或.【題目點撥】本題考查正弦定理的應(yīng)用,在利用正弦值求角時,除了找出銳角還要注意相應(yīng)的補角是否滿足題意,考查計算能力,屬于基礎(chǔ)題.13、①③【解題分析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【題目詳解】由題意,對于①中,在中,當,則,若為直角三角形,則必有一個角在內(nèi);若為銳角三角形,則必有一個內(nèi)角小于等于;若為鈍角三角形,也必有一個角小于內(nèi),所以總存在某個內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【題目點撥】本題以真假命題為載體,考查了正弦、余弦定理的應(yīng)用,以及向量的運算及應(yīng)用,其中解答中熟練應(yīng)用解三角形的知識和向量的運算進行化簡是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.14、【解題分析】

利用余弦定理與不等式結(jié)合的思想求解,,的關(guān)系.即可求解的值.【題目詳解】解:根據(jù)①余弦定理②由①②可得:化簡:,,,,,,此時,故得,即,.故答案為:.【題目點撥】本題主要考查了存在性思想,余弦定理與不等式結(jié)合的思想,界限的利用.屬于中檔題.15、【解題分析】

在等式兩邊取倒數(shù),可得出,然后利用等差數(shù)列的通項公式求出的通項公式,即可求出.【題目詳解】,等式兩邊同時取倒數(shù)得,.所以,數(shù)列是以為首項,以為公差的等差數(shù)列,.因此,.故答案為:.【題目點撥】本題考查利用倒數(shù)法求數(shù)列通項,同時也考查了等差數(shù)列的定義,考查計算能力,屬于中等題.16、【解題分析】試題分析:因為不等式有解,所以,因為,且,所以,當且僅當,即時,等號是成立的,所以,所以,即,解得或.考點:不等式的有解問題和基本不等式的求最值.【方法點晴】本題主要考查了基本不等式在最值中的應(yīng)用,不等式的有解問題,在應(yīng)用基本不等式求解最值時,呀注意“一正、二定、三相等”的判斷,運用基本不等式解題的關(guān)鍵是尋找和為定值或是積為定值,難點在于如何合理正確的構(gòu)造出定值,對于不等式的有解問題一般選用參數(shù)分離法,轉(zhuǎn)化為函數(shù)的最值或借助數(shù)形結(jié)合法求解,屬于中檔試題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2(2)時,,時,,時,不等式的解集為空集,時,,時,.【解題分析】

(1)根據(jù)不等式的解集和韋達定理,可列出關(guān)于a的方程組,解得a;(2)不等式化為,討論a的取值,從而求得不等式的解集?!绢}目詳解】(1)由題得,,解集為,則有,解得;(2)由題,:當時,不等式化為,解得;當時,不等式等價于,若,解得;若,解得,若,解得;當時,不等式等價于,解得或.綜上,時,不等式的解集為,時,不等式的解集為,時,不等式的解集為空集,時,不等式的解集為,時,不等式的解集為.【題目點撥】本題考查一元二次不等式的解法與應(yīng)用,以及通過討論參數(shù)取值求不等式的解集,有一定的難度。18、(1)(2)【解題分析】

(1)由題意利用線段的定比分點坐標公式,兩個向量坐標形式的運算法則,求出點P的坐標.(2)由題意利用兩個向量垂直的性質(zhì),兩個向量坐標形式的運算法則,求出點Q的坐標.【題目詳解】設(shè),因為,所以,又,所以,解得,從而.設(shè),所以,由已知直線與直線垂直,所以則,解得,所以.【題目點撥】本題主要考查了線段的定比分點坐標公式,兩個向量垂直的性質(zhì),兩個向量坐標形式的運算,屬于基礎(chǔ)題,著重考查了推理與運算能力.19、長和寬均為4m時,最小值為64【解題分析】

利用體積求得ab=16,只需表示出表面積,結(jié)合高為2m,利用基本不等式求出最值即可.【題目詳解】設(shè)底面的長和寬分別為,因為體積為32,高為c=2m,所以底面積為16,即ab=16所用材料的面積S=2ab+2bc+2ca=32+4(a+b),當且僅當a=b=4時取等號,答:當?shù)酌娴拈L和寬均為4m時,所用的材料表面積最少,其最小值為64【題目點撥】與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進行解答.20、(1)見解析;(2)存在,.【解題分析】

(1)利用等比數(shù)列的定義結(jié)合數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列為等比數(shù)列,并可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用分組求和法與等比數(shù)列的求和公式分別求出數(shù)列、,設(shè),列出關(guān)于、、的方程組,解出即可.【題目詳解】(1)在數(shù)列中,,,則,,且,數(shù)列是以為首項,為公比的等比數(shù)列,;(2),整理得,,,,所以,,若數(shù)列為等差數(shù)列,可設(shè),則,即,則,解得,因此,存在實數(shù),使得數(shù)列為等差數(shù)列.【題目點撥】本題考查等差

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論