版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆甘肅省蘭州市城關(guān)區(qū)蘭州第一中學數(shù)學高一下期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的終邊上一點,且,則()A. B. C. D.2.若,則等于()A. B. C. D.3.已知2弧度的圓心角所對的弧長為2,則這個圓心角所對的弦長是()A. B. C. D.4.曲線與曲線的()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等5.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.6.已知數(shù)列的前項和為,且,若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.7.如圖,已知矩形中,,,該矩形所在的平面內(nèi)一點滿足,記,,,則()A.存在點,使得 B.存在點,使得C.對任意的點,有 D.對任意的點,有8.平面直角坐標系xOy中,角的頂點在原點,始邊在x軸非負半軸,終邊與單位圓交于點,將其終邊繞O點逆時針旋轉(zhuǎn)后與單位園交于點B,則B的橫坐標為()A. B. C. D.9.從裝有2個白球和2個黑球的口袋內(nèi)任取兩個球,那么互斥而不對立的事件是A.至少有一個黑球與都是黑球 B.至少有一個黑球與至少有一個白球C.恰好有一個黑球與恰好有兩個黑球 D.至少有一個黑球與都是白球10.下列角中終邊與相同的角是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知的三邊分別是,且面積,則角__________.12.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐標是.13.若的面積,則=14.已知,是夾角為的兩個單位向量,向量,,若,則實數(shù)的值為________.15.若直線:與直線的交點位于第一象限,則直線的傾斜角的取值范圍是___________.16.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知的內(nèi)角的對邊分別為,若向量,且.(1)求角的值;(2)已知的外接圓半徑為,求周長的取值范圍.18.已知是等差數(shù)列,滿足,,且數(shù)列的前n項和.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和為,求證:.19.如圖,為圓的直徑,點,在圓上,,矩形和圓所在的平面互相垂直,已知,.(1)求證:平面平面;(2)當時,求多面體的體積.20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求在區(qū)間上的最大值和最小值.21.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當四棱錐的體積最大時,求AM與CD所成的角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
由角的終邊上一點得,根據(jù)條件解出即可【題目詳解】由角的終邊上一點得所以解得故選:B【題目點撥】本題考查的是三角函數(shù)的定義,較簡單.2、B【解題分析】試題分析:,.考點:三角恒等變形、誘導公式、二倍角公式、同角三角函數(shù)關(guān)系.3、D【解題分析】
由弧長公式求出圓半徑,再在直角三角形中求解.【題目詳解】,如圖,設是中點,則,,,∴.故選D.【題目點撥】本題考查扇形弧長公式,在求弦長時,常在直角三角形中求解.4、D【解題分析】
首先將后面的曲線化簡為標準形式,分別求兩個曲線的幾何性質(zhì),比較后得出選項.【題目詳解】首先化簡為標準方程,,由方程形式可知,曲線的長軸長是8,短軸長是6,焦距是,離心率,,的長軸長是,短軸長是,焦距是,離心率,所以離心率相等.故選D.【題目點撥】本題考查了橢圓的幾何性質(zhì),屬于基礎題型.5、C【解題分析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因為為直角三角形,經(jīng)分析只能,故,三棱錐的外接球的圓心為PC的中點,所以則球的表面積為.故選C.6、B【解題分析】即對任意都成立,當時,當時,當時,歸納得:故選點睛:根據(jù)已知條件運用分組求和法不難計算出數(shù)列的前項和為,為求的取值范圍則根據(jù)為奇數(shù)和為偶數(shù)兩種情況進行分類討論,求得最后的結(jié)果7、C【解題分析】以為原點,以所在直線為軸、軸建立坐標系,則,,且在矩形內(nèi),可設,,,,,,錯誤,正確,,,錯誤,錯誤,故選C.【方法點睛】本題主要考查平面向量數(shù)量積公式的坐標表示,屬于中檔題.平面向量數(shù)量積公式有兩種形式,一是幾何形式,,二是坐標形式,(求最值問題與求范圍問題往往運用坐標形式),主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).8、B【解題分析】
,B的橫坐標為,計算得到答案.【題目詳解】有題意知:B的橫坐標為:故答案選B【題目點撥】本題考查了三角函數(shù)的計算,意在考查學生的計算能力.9、C【解題分析】
列舉每個事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,依次驗證即可【題目詳解】對于A:事件:“至少有一個黑球”與事件:“都是黑球”可以同時發(fā)生,如:兩個都是黑球,∴這兩個事件不是互斥事件,∴A不正確對于B:事件:“至少有一個黑球”與事件:“至少有一個白球”可以同時發(fā)生,如:一個白球一個黑球,∴B不正確對于C:事件:“恰好有一個黑球”與事件:“恰有兩個黑球”不能同時發(fā)生,但從口袋中任取兩個球時還有可能是兩個都是白球,∴兩個事件是互斥事件但不是對立事件,∴C正確對于D:事件:“至少有一個黑球”與“都是白球”不能同時發(fā)生,但一定會有一個發(fā)生,∴這兩個事件是對立事件,∴D不正確故選C.【題目點撥】本題考查互斥事件與對立事件.首先要求理解互斥事件和對立事件的定義,理解互斥事件與對立事件的聯(lián)系與區(qū)別.同時要能夠準確列舉某一事件所包含的基本事件.屬簡單題10、B【解題分析】與30°的角終邊相同的角α的集合為{α|α=330°+k?360°,k∈Z}當k=-1時,α=-30°,故選B二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.12、【解題分析】試題分析:因為,所以.考點:向量坐標運算.13、【解題分析】試題分析:,.考點:三角形的面積公式及余弦定理的變形.點評:由三角形的面積公式,再根據(jù),直接可求出tanC的值,從而得到C.14、【解題分析】
由題意得,且,,由=,解得即可.【題目詳解】已知,是夾角為的兩個單位向量,所以,得,若解得故答案為【題目點撥】本題考查了向量數(shù)量積的運算性質(zhì),考查了計算能力,屬于基礎題.15、【解題分析】若直線與直線的交點位于第一象限,如圖所示:則兩直線的交點應在線段上(不包含點),當交點為時,直線的傾斜角為,當交點為時,斜率,直線的傾斜角為∴直線的傾斜角的取值范圍是.故答案為16、【解題分析】試題分析:由題意可得,∴,解得0<q<1考點:等比數(shù)列的性質(zhì)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】試題分析:(1)由,得,利用正弦定理統(tǒng)一到角上易得(2)根據(jù)題意,得,由余弦定理,得,結(jié)合均值不等式可得,所以的最大值為4,又,從而得到周長的取值范圍.試題解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根據(jù)題意,得.由余弦定理,得,即,整理得,當且僅當時,取等號,所以的最大值為4.又,所以,所以.所以的周長的取值范圍為.18、(1),(2)證明見解析【解題分析】
(1)計算,得到,再計算的通項公式得到答案.(2),利用裂項求和得到得到證明.【題目詳解】(1),,.,.是等差數(shù)列,所以,所以.當時,,又,所以,當時,,符合,所以的通項公式是.(2).所以,即.【題目點撥】本題考查了數(shù)列的通項公式,裂項求和,意在考查學生對于數(shù)列公式方法的靈活運用.19、(1)證明見解析;(2)【解題分析】
(1)由題可得,,從而可得平面,由此證明平面平面;(2)過作交于,所以為四棱錐的高,多面體的體積,利用體積公式即可得到答案.【題目詳解】(1)證明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵為圓的直徑,∴,又,∴平面,∵平面,平面平面;(2)過作交于,由面面垂直性質(zhì)可得平面,即為四棱錐的高,由是邊長為1的等邊三角形,可得,又正方形的面積為4,∴..所以.【題目點撥】本題主要考查面面垂直的證明,以及求多面體的體積,要求熟練掌握相應判定定理以及椎體、柱體的體積公式,屬于中檔題.20、(1);(2),.【解題分析】
(1)利用二倍角余弦、正弦公式以及輔助角公式將函數(shù)的解析式化簡,然后利用周期公式可計算出函數(shù)的最小正周期;(2)由計算出的取值范圍,然后利用正弦函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上的最大值和最小值.【題目詳解】(1),因此,函數(shù)的最小正周期為;(2),,當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.【題目點撥】本題考查三角函數(shù)周期和最值的計算,同時也考查了利用二倍角公式以及輔助角公式化簡,在求解三角函數(shù)在定區(qū)間上的最值問題時,首先應計算出對象角的取值范圍,結(jié)合同名三角函數(shù)的基本性質(zhì)來計算,考查分析問題和解決問題的能力,屬于中等題.21、(1)證明見解析(2)【解題分析】
(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【題目詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當M為半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024事業(yè)單位聘用合同糾紛處理與法律適用總結(jié)3篇
- 2024年多功能設備維護合作協(xié)議2篇
- 2024年度數(shù)據(jù)保密與信息安全認證協(xié)議3篇
- 2025年拉薩貨運上崗證考試題庫1387題
- 洛陽文化旅游職業(yè)學院《黑臭水體治理技術(shù)》2023-2024學年第一學期期末試卷
- 科技創(chuàng)新資金撥付管理
- 甘肅省隴南市2024-2025學年高一上學期期中考試歷史試卷(解析版)
- 信息技術(shù)部門組織結(jié)構(gòu)
- 城市綠化監(jiān)控系統(tǒng)安裝合同
- 2024年廢棄水塘承包合同最長期限3篇
- 2023年船廠租賃合同正規(guī)范本(通用版)
- 行政人資總監(jiān)績效考核表
- 四級公路施工組織設計
- 人事考試服務投標方案(技術(shù)方案)
- 購物申請表格
- 2023-2024學年張家口市宣化縣六年級數(shù)學第一學期期末檢測模擬試題含答案
- 外貿(mào)企業(yè)出口價格(報價)核算表(已含自動計算公司excel)
- 《為父母分擔》 單元作業(yè)設計
- 三年級上冊美術(shù)教學設計-第五課 線的秘密 ︳湘美版
- 錦瑟公開課錦瑟公開課匯總市公開課一等獎課件省賽課獲獎課件
- 爺爺八十大壽孫子祝詞爺爺八十大壽祝壽詞
評論
0/150
提交評論