云南省曲靖市陸良縣第八中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第1頁
云南省曲靖市陸良縣第八中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第2頁
云南省曲靖市陸良縣第八中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第3頁
云南省曲靖市陸良縣第八中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第4頁
云南省曲靖市陸良縣第八中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省曲靖市陸良縣第八中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,BC邊上的高等于,則A. B. C. D.2.當(dāng)為第二象限角時,的值是().A. B. C. D.3.已知函數(shù)的最小正周期為,將該函數(shù)的圖象向左平移個單位后,得到的圖象對應(yīng)的函數(shù)為偶函數(shù),則的圖象()A.關(guān)于點對稱 B.關(guān)于直線對稱C.關(guān)于點對稱 D.關(guān)于直線對稱4.在四邊形ABCD中,若,則四邊形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四邊形5.以點為圓心,且經(jīng)過點的圓的方程為()A. B.C. D.6.執(zhí)行如圖所示的程序,已知的初始值為,則輸出的的值是()A. B. C. D.7.的斜二測直觀圖如圖所示,則原的面積為()A. B.1 C. D.28.已知A(2,4)與B(3,3)關(guān)于直線l對稱,則直線l的方程為().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=09.設(shè)等比數(shù)列的前項和為,若,,則()A.63 B.62 C.61 D.6010.如圖是函數(shù)的部分圖象,則下列命題中,正確的命題序號是①函數(shù)的最小正周期為②函數(shù)的振幅為③函數(shù)的一條對稱軸方程為④函數(shù)的單調(diào)遞增區(qū)間是⑤函數(shù)的解析式為A.③⑤ B.③④ C.④⑤ D.①③二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域記作集合,隨機地投擲一枚質(zhì)地均勻的正方體骰子(骰子的每個面上分別標(biāo)有點數(shù),,,),記骰子向上的點數(shù)為,則事件“”的概率為________.12.如圖是一個三角形數(shù)表,記,,…,分別表示第行從左向右數(shù)的第1個數(shù),第2個數(shù),…,第個數(shù),則當(dāng),時,______.13.已知直線和,若,則a等于________.14.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內(nèi)切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.15.不等式的解集是______.16.在中,,,.若,,且,則的值為______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.解方程:.18.下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時間與每天獲得的利潤(單位:萬元)的有關(guān)數(shù)據(jù).星期星期2星期3星期4星期5星期6利潤23569(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;(2)估計星期日獲得的利潤為多少萬元.參考公式:19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.20.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當(dāng)四棱錐的體積最大時,求AM與CD所成的角.21.已知向量,,.(1)若,求的值;(2)設(shè),若恒成立,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】試題分析:設(shè)邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點】正弦定理【方法點撥】在平面幾何圖形中求相關(guān)的幾何量時,需尋找各個三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個三角形,然后選用正弦定理與余弦定理求解.2、C【解題分析】

根據(jù)為第二象限角,,,去掉絕對值,即可求解.【題目詳解】因為為第二象限角,∴,,∴,故選C.【題目點撥】本題重點考查三角函數(shù)值的符合,三角函數(shù)在各個象限內(nèi)的符號可以結(jié)合口訣:一全正,二正弦,三正切,四余弦,增加記憶印象,屬于基礎(chǔ)題3、A【解題分析】

由周期求出,按圖象平移寫出函數(shù)解析式,再由偶函數(shù)性質(zhì)求出,然后根據(jù)正弦函數(shù)的性質(zhì)判斷.【題目詳解】由題意,平移得函數(shù)式為,其為偶函數(shù),∴,由于,∴.,,.∴是對稱中心.故選:A.【題目點撥】本題考查求三角函數(shù)的解析式,考查三角函數(shù)的對稱性的奇偶性.掌握三角函數(shù)圖象變換是基礎(chǔ),掌握三角函數(shù)的性質(zhì)是解題關(guān)鍵.4、D【解題分析】試題分析:因為,根據(jù)向量的三角形法則,有,則可知,故四邊形ABCD為平行四邊形.考點:向量的三角形法則與向量的平行四邊形法則.5、B【解題分析】

通過圓心設(shè)圓的標(biāo)準(zhǔn)方程,代入點即可.【題目詳解】設(shè)圓的方程為:,又經(jīng)過點,所以,即,所以圓的方程:.故選B【題目點撥】此題考查圓的標(biāo)準(zhǔn)方程,記住標(biāo)準(zhǔn)方程的一般設(shè)法,代入數(shù)據(jù)即可求解,屬于簡單題目.6、C【解題分析】

第一次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);接下來繼續(xù)寫出第二次、第三次運算,直至,然后輸出的值.【題目詳解】初始值第一次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);第二次運行:,滿足循環(huán)條件因而繼續(xù)循環(huán);第三次運行:,不滿足循環(huán)條件因而繼續(xù)循環(huán),跳出循環(huán);此時.故選:C【題目點撥】本題是一道關(guān)于循環(huán)結(jié)構(gòu)的問題,需要借助循環(huán)結(jié)構(gòu)的相關(guān)知識進(jìn)行解答,需掌握循環(huán)結(jié)構(gòu)的兩種形式,屬于基礎(chǔ)題.7、D【解題分析】

根據(jù)直觀圖可計算其面積為,原的面積為,由得結(jié)論.【題目詳解】由題意可得,所以由,即.故選:D.【題目點撥】本題考查了斜二側(cè)畫直觀圖,三角形的面積公式,需要注意的是與原圖與直觀圖的面積之比為,屬于基礎(chǔ)題.8、C【解題分析】試題分析:兩點關(guān)于直線對稱,則,點與的中點在直線上,,那么直線的斜率等于,中點坐標(biāo)為,即中點坐標(biāo)為,,整理得:,故選C.考點:求直線方程9、A【解題分析】

由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計算可得.【題目詳解】因為,,成等比數(shù)列,即3,12,成等比數(shù)列,所以,解得.【題目點撥】本題考查等比數(shù)列的性質(zhì)與前項和的計算,考查運算求解能力.10、A【解題分析】

根據(jù)圖象求出函數(shù)解析式,根據(jù)三角函數(shù)型函數(shù)的性質(zhì)逐一判定.【題目詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數(shù)的單調(diào)遞增區(qū)間是,故錯;故選:A【題目點撥】本題主要考查了根據(jù)圖象求正弦型函數(shù)函數(shù)的解析式,及正弦型函數(shù)的性質(zhì),屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】要使函數(shù)有意義,則且,即且,即,隨機地投擲一枚質(zhì)地均勻的正方體骰子,記骰子向上的點數(shù)為,則,則事件“”的概率為.12、【解題分析】

由圖表,利用歸納法,得出,再利用疊加法,即可求解數(shù)列的通項公式.【題目詳解】由圖表,可得,,,,,可歸納為,利用疊加法可得:,故答案為.【題目點撥】本題主要考查了歸納推理的應(yīng)用,以及數(shù)列的疊加法的應(yīng)用,其中解答中根據(jù)圖表,利用歸納法,求得數(shù)列的遞推關(guān)系式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.13、【解題分析】

根據(jù)兩直線互相垂直的性質(zhì)可得,從而可求出的值.【題目詳解】直線和垂直,.解得.故答案為:【題目點撥】本題考查了直線的一般式,根據(jù)兩直線的位置關(guān)系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關(guān)鍵,屬于基礎(chǔ)題.14、825【解題分析】

以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【題目詳解】過點M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當(dāng)k>﹣3時,4(k+3)25≥825,當(dāng)且僅當(dāng)4(k+3),即k3時取等號;②當(dāng)k<﹣3時,則4(k+3)23≥823,當(dāng)且僅當(dāng)﹣4(k+3),即k3時取等號.故答案為:825【題目點撥】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學(xué)生對這些知識的理解掌握水平.15、【解題分析】

由題可得,分式化乘積得,進(jìn)而求得解集.【題目詳解】由移項通分可得,即,解得,故解集為【題目點撥】本題考查分式不等式的解法,屬于基礎(chǔ)題.16、【解題分析】,則.【考點】向量的數(shù)量積【名師點睛】根據(jù)平面向量的基本定理,利用表示平面向量的一組基地可以表示平面內(nèi)的任一向量,利用向量的定比分點公式表示向量,計算數(shù)量積,選取基地很重要,本題的已知模和夾角,選作基地易于計算數(shù)量積.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、或或【解題分析】

由倍角公式可將題目中的方程變形解出來【題目詳解】因為所以或由得由得所以所以或所以或綜上:或或【題目點撥】,我們在解題的時候要靈活選擇.18、見解析【解題分析】

(1)根據(jù)表中所給數(shù)據(jù),求出橫標(biāo)的平均數(shù),把求得的數(shù)據(jù)代入線性回歸方程的系數(shù)公式,利用最小二乘法得到結(jié)果,寫出線性回歸方程。(2)根據(jù)二問求得的線性回歸方程,代入所給的的值,預(yù)報出銷售價格的估計值,這個數(shù)字不是一個準(zhǔn)確數(shù)值?!绢}目詳解】(1)由題意可得,,因此,,所以,-所以;(2)由(1)可得,當(dāng)時,(萬元),即星期日估計活動的利潤為10.1萬元。【題目點撥】關(guān)鍵點通過參考公式求出,的值,通過線性回歸方程求解的是一個估計值。19、(1)(2)【解題分析】

(1)通過降次公式和輔助角公式化簡函數(shù)得到,再根據(jù)周期公式得到答案.(2)根據(jù)(1)中函數(shù)表達(dá)式,直接利用單調(diào)區(qū)間公式得到答案.【題目詳解】(1)由題意得.可得:函數(shù)的最小正周期(2)由,得,所以函數(shù)的單調(diào)遞增區(qū)間為.【題目點撥】本題考查三角函數(shù)的最小正周期,函數(shù)的單調(diào)區(qū)間,將函數(shù)化簡為標(biāo)準(zhǔn)形式是解題的關(guān)鍵,意在考查學(xué)生對于三角函數(shù)性質(zhì)的應(yīng)用和計算能力.20、(1)證明見解析(2)【解題分析】

(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當(dāng)四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【題目詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當(dāng)M為半圓弧CD的中點時,四棱錐的體積最大,此時,過點M作MOCD于點E,平面CDM平面ABCDMO平面ABCD,即MO為四棱錐的高又底面ABCD面積為定值2,AM與CD所成的角即AM與AB所成的角,求得,三角形為正三角形,,故AM與CD所成的角為【題目點撥】本題主要考查異面直線成的角,面面垂直的判定定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時要正確運用有關(guān)的定理,找出足夠的條件進(jìn)行推理.21、(1);(2).【解題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論