江西省九江市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第1頁
江西省九江市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第2頁
江西省九江市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第3頁
江西省九江市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第4頁
江西省九江市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省九江市重點中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在四棱錐中,底面,底面為直角梯形,,,則直線與平面所成角的大小為()A. B. C. D.2.若一個人下半身長(肚臍至足底)與全身長的比近似為5-12(5-12≈0.618A.身材完美,無需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時穿戴同樣高度的增高鞋與帽子3.已知是常數(shù),如果函數(shù)的圖像關(guān)于點中心對稱,那么的最小值為()A. B. C. D.4.直線l:與圓C:交于A,B兩點,則當(dāng)弦AB最短時直線l的方程為A. B.C. D.5.在直角梯形中,,,,,,則梯形繞著旋轉(zhuǎn)而成的幾何體的體積為()A. B. C. D.6.如圖,網(wǎng)格紙上小正方形的邊長均為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.34 B.42 C.54 D.727.若兩個球的半徑之比為,則這兩球的體積之比為()A. B. C. D.8.若,,,設(shè),,且,則的值為()A.0 B.3 C.15 D.189.計算:的結(jié)果為()A.1 B.2 C.-1 D.-210.函數(shù)的最小正周期是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)向量,,______.12.若不等式的解集為空集,則實數(shù)的能為___________.13.設(shè),,,,,為坐標(biāo)原點,若、、三點共線,則的最小值是_______.14.已知向量滿足,則與的夾角的余弦值為__________.15.已知三棱錐,若平面ABC,,則異面直線PB與AC所成角的余弦值為______.16.如圖,在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某高中為了選拔學(xué)生參加“全國高中數(shù)學(xué)聯(lián)賽”,先在本校進行初賽(滿分150分),隨機抽取100名學(xué)生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中a的值;(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).18.2016年崇明區(qū)政府投資8千萬元啟動休閑體育新鄉(xiāng)村旅游項目.規(guī)劃從2017年起,在今后的若干年內(nèi),每年繼續(xù)投資2千萬元用于此項目.2016年該項目的凈收入為5百萬元,并預(yù)測在相當(dāng)長的年份里,每年的凈收入均為上一年的基礎(chǔ)上增長.記2016年為第1年,為第1年至此后第年的累計利潤(注:含第年,累計利潤=累計凈收入﹣累計投入,單位:千萬元),且當(dāng)為正值時,認為該項目贏利.(1)試求的表達式;(2)根據(jù)預(yù)測,該項目將從哪一年開始并持續(xù)贏利?請說明理由.19.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機選取一個向量,求的概率.20.在區(qū)間內(nèi)隨機取兩個數(shù),則關(guān)于的一元二次方程有實數(shù)根的概率為__________.21.從半徑為1的半圓出發(fā),以此向內(nèi)、向外連續(xù)作半圓,且后一個半圓的直徑為前一個半圓的半徑,如此下去,可得到無數(shù)個半圓.(1)求出所有這些半圓圍城的封閉圖形的周長;(2)求出所有這些半圓圍城的封閉圖形的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

取中點,中點,連接,先證明為所求角,再計算其大小.【題目詳解】取中點,中點,連接.設(shè)易知:平面平面易知:四邊形為平行四邊形平面,即為直線與平面所成角故答案選A【題目點撥】本題考查了線面夾角,先找出線面夾角是解題的關(guān)鍵.2、C【解題分析】

對每一個選項逐一分析研究得解.【題目詳解】A.103103+72B.假設(shè)她需要戴上高度為x厘米的帽子,則103175C.假設(shè)她可以穿一雙合適高度為y的增高鞋,則103+D.假設(shè)同時穿戴同樣高度z的增高鞋與帽子,則103+故選:C【題目點撥】本題主要考查學(xué)生對新定義的理解和應(yīng)用,屬于基礎(chǔ)題.3、C【解題分析】

將點的坐標(biāo)代入函數(shù)的解析式,得出,求出的表達式,可得出的最小值.【題目詳解】由于函數(shù)的圖象關(guān)于點中心對稱,則,,則,因此,當(dāng)時,取得最小值,故選C.【題目點撥】本題考查余弦函數(shù)的對稱性,考查初相絕對值的最小值,解題時要結(jié)合題中條件求出初相的表達式,結(jié)合表達式進行計算,考查分析問題和解決問題的能力,屬于中等題.4、A【解題分析】

先求出直線經(jīng)過的定點,再求出弦AB最短時直線l的方程.【題目詳解】由題得,所以直線l過定點P.當(dāng)CP⊥l時,弦AB最短.由題得,所以.所以直線l的方程為.故選:A【題目點撥】本題主要考查直線過定點問題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.5、A【解題分析】

易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,再根據(jù)圓臺的體積公式求解即可.【題目詳解】易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,圓臺的高,上底面圓半徑,下底面圓半徑.故該圓臺的體積故選:A【題目點撥】本題主要考查了旋轉(zhuǎn)體中圓臺的體積公式,屬于基礎(chǔ)題.6、C【解題分析】

還原幾何體得四棱錐E﹣ABCD,由圖中數(shù)據(jù)利用椎體的體積公式求解即可.【題目詳解】依三視圖知該幾何體為四棱錐E﹣ABCD,如圖,ABCD是直角梯形,是棱長為6的正方體的一部分,梯形的面積為:12幾何體的體積為:13故選:C.【題目點撥】本題考查三視圖求幾何體的體積,由三視圖正確還原幾何體和補形是解題的關(guān)鍵,考查空間想象能力.7、C【解題分析】

根據(jù)球的體積公式可知兩球體積比為,進而得到結(jié)果.【題目詳解】由球的體積公式知:兩球的體積之比故選:【題目點撥】本題考查球的體積公式的應(yīng)用,屬于基礎(chǔ)題.8、B【解題分析】

首先分別求出向量,然后再用兩向量平行的坐標(biāo)表示,最后求值.【題目詳解】,,當(dāng)時,,解得.故選B.【題目點撥】本題考查了向量平行的坐標(biāo)表示,屬于基礎(chǔ)題型.9、B【解題分析】

利用恒等變換公式化簡得的答案.【題目詳解】故答案選B【題目點撥】本題考查了三角恒等變換,意在考查學(xué)生的計算能力.10、C【解題分析】

根據(jù)三角函數(shù)的周期公式,進行計算,即可求解.【題目詳解】由角函數(shù)的周期公式,可得函數(shù)的周期,又由絕對值的周期減半,即為最小正周期為,故選C.【題目點撥】本題主要考查了三角函數(shù)的周期的計算,其中解答中熟記余弦函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了計算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用向量夾角的坐標(biāo)公式即可計算.【題目詳解】.【題目點撥】本題主要考查了向量夾角公式的坐標(biāo)運算,屬于容易題.12、【解題分析】

根據(jù)分式不等式,移項、通分并等價化簡,可得一元二次不等式.結(jié)合二次函數(shù)恒成立條件,即可求得的值.【題目詳解】將不等式化簡可得即的解集為空集所以對于任意都恒成立將不等式等價化為即恒成立由二次函數(shù)性質(zhì)可知化簡不等式可得解得故答案為:【題目點撥】本題考查了分式不等式的解法,將不等式等價化為一元二次不等式,結(jié)合二次函數(shù)性質(zhì)解決恒成立問題,屬于中檔題.13、【解題分析】

根據(jù)三點共線求得的的關(guān)系式,利用基本不等式求得所求表達式的最小值.【題目詳解】依題意,由于三點共線,所以,化簡得,故,當(dāng)且僅當(dāng),即時,取得最小值【題目點撥】本小題主要考查三點共線的向量表示,考查利用基本不等式求最小值,屬于基礎(chǔ)題.14、【解題分析】

由得,結(jié)合條件,即可求出,的值,代入求夾角公式,即可求解.【題目詳解】由得與的夾角的余弦值為.【題目點撥】本題考查數(shù)量積的定義,公式的應(yīng)用,求夾角公式的應(yīng)用,計算量較大,屬基礎(chǔ)題.15、【解題分析】

過B作,且,則或其補角即為異面直線PB與AC所成角由此能求出異面直線PB與AC所成的角的余弦值.【題目詳解】過B作,且,則四邊形為菱形,如圖所示:或其補角即為異面直線PB與AC所成角.設(shè).,,平面ABC,,.異面直線PB與AC所成的角的余弦值為.故答案為.【題目點撥】本題考查異面直線所成角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).16、【解題分析】如圖,取中點,中點,連接,由題可知,邊長均為1,則,中,,則,得,所以二面角的平面角即,在中,,則,所以.點睛:本題采用幾何法去找二面角,再進行求解.利用二面角的定義:公共邊上任取一點,在兩個面內(nèi)分別作公共邊的垂線,兩垂線的夾角就是二面角的平面角,找到二面角的平面角,再求出對應(yīng)三角形的三邊,利用余弦定理求解(本題中剛好為直角三角形).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80【解題分析】

(1)利用頻率分布直方圖的性質(zhì),列出方程,即可求解;(2)由頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,即可求解.【題目詳解】(1)由頻率分布直方圖的性質(zhì),可得,解得.(2)由頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,可得平均數(shù)為:中位數(shù)為x,則,解得.根據(jù)眾數(shù)的概念,可得此頻率分布直方圖的眾數(shù)為:80,因此估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80.【題目點撥】本題主要考查了頻率分布直方圖的性質(zhì),平均數(shù)、中位數(shù)和眾數(shù)的求解,其中解答中熟記頻率分布直方圖的相關(guān)知識是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1);(2).【解題分析】試題分析:(1)由題意知,第一年至此后第年的累計投入為(千萬元),第年至此后第年的累計凈收入為,利用等比數(shù)列數(shù)列的求和公式可得;(2)由,利用指數(shù)函數(shù)的單調(diào)性即可得出.試題解析:(1)由題意知,第1年至此后第n(n∈N*)年的累計投入為8+2(n﹣1)=2n+6(千萬元),第1年至此后第n(n∈N*)年的累計凈收入為+×+×+…+×=(千萬元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千萬元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴當(dāng)n≤3時,f(n+1)﹣f(n)<1,故當(dāng)n≤2時,f(n)遞減;當(dāng)n≥2時,f(n+1)﹣f(n)>1,故當(dāng)n≥2時,f(n)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利;方法二:設(shè)f(x)=﹣2x﹣7(x≥1),則f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.從而當(dāng)x∈[1,2)時,f'(x)<1,f(x)遞減;當(dāng)x∈(2,+∞)時,f'(x)>1,f(x)遞增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴該項目將從第8年開始并持續(xù)贏利.答:該項目將從2123年開始并持續(xù)贏利.19、(1);(2);(3).【解題分析】

(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標(biāo),求得向量對應(yīng)點的軌跡方程,將問題轉(zhuǎn)化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應(yīng)的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【題目詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè),由可得.不妨設(shè)的起始點為坐標(biāo)原點,終點為C.因此,點C落在以)為圓心,1為半徑的圓上(如圖).因為,即由圓的特點可知的最小值為,即:.(3)當(dāng)時,因為,,滿足勾股定理,故容易得.當(dāng)時,假設(shè)此時點落在如圖所示的F點處.如圖所示.因為,由余弦定理容易得,故.所以,本題化為,在半圓上任取一點C,點C落在弧CF上的概率.由幾何概型的概率計算可知:的概率即為圓心角的弧度除以,即.【題目點撥】本題考查向量垂直時數(shù)量積的表示,以及利用解析的手段解決向量問題的能力,還有幾何概型的概率計算,涉及圓方程的求解,以及余弦定理.本題屬于綜合題,值得總結(jié).20、【解題分析】試題分析:解:在平面直角坐標(biāo)系中,以軸和軸分別表示的值,因為m、n是中任意取的兩個數(shù),所以點與右圖中正方形內(nèi)的點一一對應(yīng),即正方形內(nèi)的所有點構(gòu)成全部試驗結(jié)果的區(qū)域.設(shè)事件表示方程有實根,則事件,所對應(yīng)的區(qū)域為圖中的陰影部分,且陰影部分的面積為.故由幾何概型公式得,即關(guān)于的一元二次方程有實根的概率為.考點:本題主要考查幾何概型概率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論