2024屆湖南省邵陽市邵東縣邵東一中高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆湖南省邵陽市邵東縣邵東一中高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆湖南省邵陽市邵東縣邵東一中高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆湖南省邵陽市邵東縣邵東一中高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆湖南省邵陽市邵東縣邵東一中高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖南省邵陽市邵東縣邵東一中高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列的前n項和為,若,,,則()A. B. C. D.2.已知向量,且,則()A. B. C. D.3.已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量=,=(cosA,sinA),若與夾角為,則acosB+bcosA=csinC,則角B等于()A. B. C. D.4.已知平面上四個互異的點、、、滿足:,則的形狀一定是()A.等邊三角形 B.直角三角形 C.等腰三角形 D.鈍角三角形5.已知滿足,且,那么下列選項中一定成立的是()A. B. C. D.6.是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)7.設點是函數(shù)圖象士的任意一點,點滿足,則的最小值為()A. B. C. D.8.已知函數(shù),若方程在上有且只有三個實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.9.在空間直角坐標系中,點關于平面對稱的點的坐標為()A. B. C. D.10.在中,是上一點,且,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的最小值為_______.12.已知數(shù)列滿足,若,則數(shù)列的通項______.13.如圖,圓錐形容器的高為圓錐內(nèi)水面的高為,且,若將圓錐形容器倒置,水面高為,則等于__________.(用含有的代數(shù)式表示)14.把數(shù)列的各項排成如圖所示三角形狀,記表示第m行、第n個數(shù)的位置,則在圖中的位置可記為____________.15.若點在冪函數(shù)的圖像上,則函數(shù)的反函數(shù)=________.16.棱長為,各面都為等邊三角形的四面體內(nèi)有一點,由點向各面作垂線,垂線段的長度分別為,則=______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設;(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設;試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?18.某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:月份123456銷售量x(萬件)1011131286利潤y(萬元)222529261612附:(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關于的回歸直線方程(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)19.已知函數(shù).(1)求函數(shù)的定義域;(2)當為何值時,等式成立?20.已知,且(1)當時,解不等式;(2)在恒成立,求實數(shù)的取值范圍.21.如圖,四棱錐中,底面為平行四邊形,,,底面.(1)證明:;(2)設,求點到面的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

根據(jù)等比數(shù)列前n項和的性質(zhì)可知、、成等比數(shù)列,即可得關于的等式,化簡即可得解.【題目詳解】等比數(shù)列的前n項和為,若,,根據(jù)等比數(shù)列前n項和性質(zhì)可知,、、滿足:化簡可得故選:D【題目點撥】本題考查了等比數(shù)列前n項和的性質(zhì)及簡單應用,屬于基礎題.2、A【解題分析】

直接利用向量平行的充要條件列方程求解即可.【題目詳解】由可得到.故選A【題目點撥】利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.3、B【解題分析】

根據(jù)向量夾角求得角的度數(shù),再利用正弦定理求得即得解.【題目詳解】由已知得:所以所以由正弦定理得:所以又因為所以因為所以所以故選B.【題目點撥】本題考查向量的數(shù)量積和正弦定理,屬于中檔題.4、C【解題分析】

由向量的加法法則和減法法則化簡已知表達式,再由向量的垂直和等腰三角形的三線合一性質(zhì)得解.【題目詳解】設邊的中點,則所以在中,垂直于的中線,所以是等腰三角形.故選C.【題目點撥】本題考查向量的線性運算和數(shù)量積,屬于基礎題.5、D【解題分析】

首先根據(jù)題意得到,,結合選項即可找到答案.【題目詳解】因為,所以.因為,所以.故選:D【題目點撥】本題主要考查不等式的性質(zhì),屬于簡單題.6、A【解題分析】

將函數(shù)化為的形式后再進行判斷便可得到結論.【題目詳解】由題意得,∵,且函數(shù)的最小正周期為,∴函數(shù)時最小正周期為的偶函數(shù).故選A.【題目點撥】判斷函數(shù)最小正周期時,需要把函數(shù)的解析式化為或的形式,然后利用公式求解即可得到周期.7、B【解題分析】

函數(shù)表示圓位于x軸下面的部分。利用點到直線的距離公式,求出最小值。【題目詳解】函數(shù)化簡得。圓心坐標,半徑為2.所以【題目點撥】本題考查點到直線的距離公式,屬于基礎題。8、A【解題分析】

先輔助角公式化簡,先求解方程的根的表達式,再根據(jù)在上有且只有三個實數(shù)根列出對應的不等式求解即可.【題目詳解】.又在上有且只有三個實數(shù)根,故,解得或,即或,.設直線與在上從做到右的第三個交點為,第四個交點為.則,.故.故實數(shù)的取值范圍為.故選:A【題目點撥】本題主要考查了根據(jù)三角函數(shù)的根求解參數(shù)范圍的問題,需要根據(jù)題意先求解根的解析式,進而根據(jù)區(qū)間中的零點個數(shù)列出區(qū)間端點滿足的關系式求解即可.屬于中檔題.9、C【解題分析】

縱豎坐標不變,橫坐標變?yōu)橄喾磾?shù).【題目詳解】點關于平面對稱的點的坐標為.故選C.【題目點撥】本題考查空間直角坐標系,屬于基礎題.10、C【解題分析】

利用平面向量的三角形法則和共線定理,即可得到結果.【題目詳解】因為是上一點,且,則.故選:C.【題目點撥】本題考查了平面向量的線性運算和共線定理的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

運用基本不等式求出結果.【題目詳解】因為,所以,,所以,所以最小值為【題目點撥】本題考查了基本不等式的運用求最小值,需要滿足一正二定三相等.12、【解題分析】

直接利用數(shù)列的遞推關系式和疊加法求出結果.【題目詳解】因為,所以當時,.時也成立.所以數(shù)列的通項.【題目點撥】本題考查的知識要點:數(shù)列的通項公式的求法及應用,疊加法在數(shù)列中的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于基礎題.13、【解題分析】

根據(jù)水的體積不變,列出方程,解出的值,即可得到答案.【題目詳解】設圓錐形容器的底面面積為,則未倒置前液面的面積為,所以水的體積為,設倒置后液面面積為,則,所以,所以水的體積為,所以,解得.【題目點撥】本題主要考查了圓錐的結構特征,以及圓錐的體積的計算與應用,其中解答中熟練應用圓錐的結構特征,利用體積公式準確運算是解答的關鍵,著重考查了空間想象能力,以及推理與運算能力,屬于中檔試題.14、【解題分析】

利用第m行共有個數(shù),前m行共有個數(shù),得的位置即可求解【題目詳解】因為第m行共有個數(shù),前m行共有個數(shù),所以應該在第11行倒數(shù)第二個數(shù),所以的位置為.故答案為:【題目點撥】本題考查等差數(shù)列的通項和求和公式,發(fā)現(xiàn)每行個數(shù)成等差是關鍵,是基礎題15、【解題分析】

根據(jù)函數(shù)經(jīng)過點求出冪函數(shù)的解析式,利用反函數(shù)的求法,即可求解.【題目詳解】因為點在冪函數(shù)的圖象上,所以,解得,所以冪函數(shù)的解析式為,則,所以原函數(shù)的反函數(shù)為.故答案為:【題目點撥】本題主要考查了冪函數(shù)的解析式的求法,以及反函數(shù)的求法,其中熟記反函數(shù)的求法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、.【解題分析】

根據(jù)等積法可得∴三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、方式一最大值【解題分析】

試題分析:(1)運用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當選擇公式進行變形;(3)把形如化為,可進一步研究函數(shù)的周期、單調(diào)性、最值和對稱性.試題解析:解(1)在中,設,則又當即時,(Ⅱ)令與的交點為,的交點為,則,于是,又當即時,取得最大值.,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:考點:把實際問題轉(zhuǎn)化為三角函數(shù)求最值問題.18、(1);(2)見解析.【解題分析】

(1)求出,由公式,得的值,從而求出的值,從而得到關于的線性回歸方程;(2)將月份和月份的銷售量值代入回歸直線方程,求出預測值,并計算預測值與實際值之間的誤差,結合題意來判斷(1)中所得回歸直線方程是否理想。【題目詳解】(1)計算得,,,則,;故關于的回歸直線方程為.(2)當時,,此時;當時,,此時.故所得的回歸直線方程是理想的.【題目點撥】本題考查回歸直線方程的應用,解題的關鍵就是弄清楚最小二乘法公式,并準確代入數(shù)據(jù)計算,著重考察計算能力,屬于中等題。19、(1);(2).【解題分析】

(1)根據(jù)對數(shù)的真數(shù)大于零,得出,解出該不等式即可得出函數(shù)的定義域;(2)根據(jù)對數(shù)的運算性質(zhì)可得出關于的方程,解出即可.【題目詳解】(1)由,得,所以,函數(shù)定義域為;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合題意,所以,當時,等式成立.【題目點撥】本題考查了對數(shù)運算以及簡單的對數(shù)方程的求解,解題時不要忽略真數(shù)大于零這一條件的限制,考查運算求解能力,屬于基礎題.20、(1);(2).【解題分析】試題分析:(1)當時,可得,即為,由對數(shù)函數(shù)的單調(diào)性,可得不不等式的解集;(2)由在上恒成立,得在上恒成立,討論,根據(jù)的范圍,由恒成立思想,可得的范圍.試題解析:(1)當時,解不等式,得,即,故不等式的解集為.(2)由在恒成立,得在恒成立,①當時,有,得,②當時,有,得,故實數(shù)的取值范圍.21、(1)見解析(2)【解題分析】試題分析:(Ⅰ)要證明線線垂直,一般用到線面垂直的性質(zhì)定理,即先要證線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論