2024屆安徽省六安二中河西校區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
2024屆安徽省六安二中河西校區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
2024屆安徽省六安二中河西校區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
2024屆安徽省六安二中河西校區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
2024屆安徽省六安二中河西校區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆安徽省六安二中河西校區(qū)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某公司為激勵創(chuàng)新,計(jì)劃逐年加大研發(fā)獎金投入,若該公司年全年投入研發(fā)獎金萬元,在此基礎(chǔ)上,每年投入的研發(fā)獎金比上一年增長,則該公司全年投入的研發(fā)獎金開始超過萬元的年份是()(參考數(shù)據(jù):,,)A.年 B.年 C.年 D.年2.某學(xué)生4次模擬考試英語作文的減分情況如下表:顯然與之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為()A. B.C. D.3.的弧度數(shù)是()A. B. C. D.4.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.5.已知分別為內(nèi)角的對邊,若,b=則=()A. B. C. D.6.已知函數(shù),若使得在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.已知數(shù)列的前項(xiàng)和滿足.若對任意正整數(shù)都有恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知,其中,則()A. B. C. D.9.從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是()A.至少有一個紅球與都是紅球B.至少有一個紅球與都是白球C.恰有一個紅球與恰有二個紅球D.至少有一個紅球與至少有一個白球10.?dāng)?shù)列中,對于任意,恒有,若,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足:(且為常數(shù)),,當(dāng)時,則數(shù)列的前項(xiàng)的和為________.12.不等式的解集是______.13.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____14.已知數(shù)列的首項(xiàng),,.若對任意,都有恒成立,則的取值范圍是_____15.一艘輪船按照北偏西30°的方向以每小時21海里的速度航行,一個燈塔M原來在輪船的北偏東30°的方向,經(jīng)過40分鐘后,測得燈塔在輪船的北偏東75°的方向,則燈塔和輪船原來的距離是_____海里.16.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知為等差數(shù)列,且(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)記的前項(xiàng)和為,若成等比數(shù)列,求正整數(shù)的值.18.已知的三個內(nèi)角、、的對邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.19.設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.20.在平面直角坐標(biāo)系中,已知向量,,.(1)若,求的值;(2)若與的夾角為,求的值.21.正項(xiàng)數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.(1)若,求數(shù)列的所有項(xiàng)的和;(2)若,求的最大值;(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】試題分析:設(shè)從2015年開始第年該公司全年投入的研發(fā)資金開始超過200萬元,由已知得,兩邊取常用對數(shù)得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過200萬元,故選B.【考點(diǎn)】增長率問題,常用對數(shù)的應(yīng)用【名師點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用.在實(shí)際問題中平均增長率問題可以看作等比數(shù)列的應(yīng)用,解題時要注意把哪個數(shù)作為數(shù)列的首項(xiàng),然后根據(jù)等比數(shù)列的通項(xiàng)公式寫出通項(xiàng),列出不等式或方程就可求解.2、D【解題分析】

求出樣本數(shù)據(jù)的中心,代入選項(xiàng)可得D是正確的.【題目詳解】,所以這組數(shù)據(jù)的中心為,對選項(xiàng)逐個驗(yàn)證,可知只有過樣本點(diǎn)中心.【題目點(diǎn)撥】本題沒有提供最小二乘法的公式,所以試題的意圖不是考查公式計(jì)算,而是要考查回歸直線過樣本點(diǎn)中心這一概念.3、B【解題分析】

由角度與弧度的關(guān)系轉(zhuǎn)化.【題目詳解】-150.故選:B.【題目點(diǎn)撥】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.4、B【解題分析】

根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【題目詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【題目點(diǎn)撥】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進(jìn)行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.5、D【解題分析】

由已知利用正弦定理可求的值,根據(jù)余弦定理可得,解方程可得的值.【題目詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負(fù)值舍去.故選.【題目點(diǎn)撥】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.6、A【解題分析】

根據(jù)在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,結(jié)合正弦函數(shù)的單調(diào)性,即可求得答案.【題目詳解】,使得在區(qū)間上為增函數(shù)可得當(dāng)時,滿足整數(shù)至少有,舍去當(dāng)時,,要使整數(shù)有且僅有一個,須,解得:實(shí)數(shù)的取值范圍是.故選:A.【題目點(diǎn)撥】本題主要考查了根據(jù)三角函數(shù)在某區(qū)間上單調(diào)求參數(shù)值,解題關(guān)鍵是掌握正弦型三角函數(shù)單調(diào)區(qū)間的解法和結(jié)合三角函數(shù)圖象求參數(shù)范圍,考查了分析能力和計(jì)算能力,屬于難題.7、C【解題分析】

先利用求出數(shù)列的通項(xiàng)公式,于是可求出,再利用參變量分離法得到,利用數(shù)列的單調(diào)性求出數(shù)列的最小項(xiàng)的值,可得出實(shí)數(shù)的取值范圍.【題目詳解】當(dāng)時,,即,得;當(dāng)時,由,得,兩式相減得,得,,所以,數(shù)列為等比數(shù)列,且首項(xiàng)為,公比為,.,由,得,所以,數(shù)列單調(diào)遞增,其最小項(xiàng)為,所以,,因此,實(shí)數(shù)的取值范圍是,故選C.【題目點(diǎn)撥】本題考查利用數(shù)列前項(xiàng)和求數(shù)列的通項(xiàng),其關(guān)系式為,其次考查了數(shù)列不等式與參數(shù)的取值范圍問題,一般利用參變量分離法轉(zhuǎn)化為數(shù)列的最值問題來求解,考查化歸與轉(zhuǎn)化問題,屬于中等題.8、D【解題分析】

先根據(jù)同角三角函數(shù)關(guān)系求得,再根據(jù)二倍角正切公式得結(jié)果.【題目詳解】因?yàn)?,且,所以,因?yàn)?,所以,因此,從而,,選D.【題目點(diǎn)撥】本題考查同角三角函數(shù)關(guān)系以及二倍角正切公式,考查基本分析求解能力,屬基礎(chǔ)題.9、C【解題分析】

從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,不同的取球情況共有以下幾種:3個球全是紅球;2個紅球和1個白球;1個紅球2個白球;3個全是白球.選項(xiàng)A中,事件“都是紅球”是事件“至少有一個紅球”的子事件;選項(xiàng)B中,事件“至少有一個紅球”與事件“都是白球”是對立事件;選項(xiàng)D中,事件“至少有一個紅球”與事件“至少有一個白球”的事件為“2個紅球1個白球”與“1個紅球2個白球”;選項(xiàng)C中,事件“恰有一個紅球”與事件“恰有2個紅球”互斥不對立,故選C.10、D【解題分析】因?yàn)?所以

,

.選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

直接利用分組法和分類討論思想求出數(shù)列的和.【題目詳解】數(shù)列滿足:(且為常數(shù)),,當(dāng)時,則,所以(常數(shù)),故,所以數(shù)列的前項(xiàng)為首項(xiàng)為,公差為的等差數(shù)列.從項(xiàng)開始,由于,所以奇數(shù)項(xiàng)為、偶數(shù)項(xiàng)為,所以,故答案為:【題目點(diǎn)撥】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項(xiàng)和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.12、【解題分析】

由題可得,分式化乘積得,進(jìn)而求得解集.【題目詳解】由移項(xiàng)通分可得,即,解得,故解集為【題目點(diǎn)撥】本題考查分式不等式的解法,屬于基礎(chǔ)題.13、【解題分析】

根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案?!绢}目詳解】設(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【題目點(diǎn)撥】本題考查分層抽樣,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題。14、【解題分析】

代入求得,利用遞推關(guān)系式可得,從而可證得和均為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式可求得通項(xiàng);根據(jù)恒成立不等式可得到不等式組:,解不等式組求得結(jié)果.【題目詳解】當(dāng)時,,解得:由得:是以為首項(xiàng),為公差的等差數(shù)列;是以為首項(xiàng),為公差的等差數(shù)列,恒成立,解得:即的取值范圍為:本題正確結(jié)果:【題目點(diǎn)撥】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問題,關(guān)鍵是能夠根據(jù)遞推關(guān)系式得到奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別成等差數(shù)列,從而分別求得通項(xiàng)公式,進(jìn)而根據(jù)所需的單調(diào)性得到不等關(guān)系.15、【解題分析】

畫出示意圖,利用正弦定理求解即可.【題目詳解】如圖所示:為燈塔,為輪船,,則在中有:,且海里,則解得:海里.【題目點(diǎn)撥】本題考查解三角形的實(shí)際應(yīng)用,難度較易.關(guān)鍵是能通過題意將航海問題的示意圖畫出,然后選用正余弦定理去分析問題.16、【解題分析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計(jì)算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點(diǎn)睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、:(Ⅰ)(Ⅱ)【解題分析】試題分析:(Ⅰ)設(shè)等差數(shù)列{an}的公差等于d,則由題意可得,解得a1=1,d=1,從而得到{an}的通項(xiàng)公式.(Ⅱ)由(Ⅰ)可得{an}的前n項(xiàng)和為Sn==n(n+1),再由=a1Sk+1,求得正整數(shù)k的值.解:(Ⅰ)設(shè)等差數(shù)列{an}的公差等于d,則由題意可得,解得a1=1,d=1.∴{an}的通項(xiàng)公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n項(xiàng)和為Sn==n(n+1).∵若a1,ak,Sk+1成等比數(shù)列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考點(diǎn):等比數(shù)列的性質(zhì);等差數(shù)列的通項(xiàng)公式.18、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【題目詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【題目點(diǎn)撥】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.19、(1)周期為π,最大值為2.(2)【解題分析】

(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【題目詳解】(1)函數(shù)f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值為2;(2)由題意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,當(dāng)b=c=1時,等號成立.∴a2≥4﹣1=3,即a.則a的最小值為.【題目點(diǎn)撥】本題考查三角函數(shù)的恒等變換,余弦形函數(shù)的性質(zhì)的應(yīng)用,余弦定理和基本不等式的應(yīng)用,是中檔題.20、(1)1(2)【解題分析】

(1).若,則,結(jié)合三角函數(shù)的關(guān)系式即可求的值;

(2).若與的夾角為,利用向量的數(shù)量積的坐標(biāo)公式進(jìn)行求解即可求的值.【題目詳解】(1)由,則即,所以所以(2),又與的夾角為,則即即由,則所以,即【題目點(diǎn)撥】本題主要考查向量數(shù)量積的定義和坐標(biāo)公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.21、(1)84;(2)1033;(3)存在,【解題分析】

(1)由題意可得:,即為:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由題意可得,故有;即,即必是2的整數(shù)冪,要最大,必需最大,,可得出的最大值;(3)由是公差為的等差數(shù)列,是公比為2的等比數(shù)列,可得與,可得k與m的方程,一一驗(yàn)算k的值可得答案.【題目詳解】解:(1)由已知,故為:2,4,6,8,10,12,14,16;公比為2,則對應(yīng)的數(shù)為2,4,8,16,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論