2024屆北京市懷柔區(qū)市級名校數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆北京市懷柔區(qū)市級名校數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆北京市懷柔區(qū)市級名校數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆北京市懷柔區(qū)市級名校數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆北京市懷柔區(qū)市級名校數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆北京市懷柔區(qū)市級名校數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為等差數(shù)列,,則的值為()A.3 B.2 C. D.12.如圖為A、B兩名運動員五次比賽成績的莖葉圖,則他們的平均成績和方差的關(guān)系是()A., B.,C., D.,3.已知等比數(shù)列的前項和為,,,則()A.31 B.15 C.8 D.74.設(shè)是公比為的無窮等比數(shù)列,若的前四項之和等于第五項起以后所有項之和,則數(shù)列是()A.公比為的等比數(shù)列B.公比為的等比數(shù)列C.公比為或的等比數(shù)列D.公比為或的等比數(shù)列5.已知的模為1,且在方向上的投影為,則與的夾角為()A.30° B.60° C.120° D.150°6.利用隨機模擬方法可估計無理數(shù)π的數(shù)值,為此設(shè)計右圖所示的程序框圖,其中rand()表示產(chǎn)生區(qū)間(0,1)上的隨機數(shù),P是s與n的比值,執(zhí)行此程序框圖,輸出結(jié)果P的值趨近于()A.π B.π4 C.π27.已知正方體的個頂點中,有個為一側(cè)面是等邊三角形的正三棱錐的頂點,則這個正三棱錐與正方體的全面積之比為()A. B. C. D.8.若直線與直線互相平行,則的值為()A.4 B. C.5 D.9.在區(qū)間上隨機選取一個實數(shù),則事件“”發(fā)生的概率是()A. B. C. D.10.《五曹算經(jīng)》是我國南北朝時期數(shù)學家甄鸞為各級政府的行政人員編撰的一部實用算術(shù)書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內(nèi)有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線和,若,則a等于________.12.在等比數(shù)列中,若,則__________.13.已知等差數(shù)列,,,,則______.14.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________15.若無窮數(shù)列的所有項都是正數(shù),且滿足,則______.16.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)當時,求函數(shù)的最小值.18.正項數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.(1)若,求數(shù)列的所有項的和;(2)若,求的最大值;(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.19.甲,乙兩機床同時加工直徑為100cm的零件,為檢驗質(zhì)量,各從中抽取6件測量的數(shù)據(jù)為:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分別計算兩組數(shù)據(jù)的平均數(shù)及方差(2)根據(jù)計算結(jié)果判斷哪臺機床加工零件的質(zhì)量更穩(wěn)定.20.如圖,在△ABC中,AB=8,AC=3,∠BAC=60°,以點A為圓心,r=2為半徑作一個圓,設(shè)PQ為圓A的一條直徑.(1)請用表示,用表示;(2)記∠BAP=θ,求的最大值.21.一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:溫度20253035產(chǎn)卵數(shù)/個520100325(1)根據(jù)散點圖判斷與哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))參考數(shù)據(jù):,,,,,,,,,,5201003251.6134.615.78

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

根據(jù)等差數(shù)列下標和性質(zhì),即可求解.【題目詳解】因為為等差數(shù)列,故解得.故選:D.【題目點撥】本題考查等差數(shù)列下標和性質(zhì),屬基礎(chǔ)題.2、D【解題分析】

根據(jù)題中數(shù)據(jù),直接計算出平均值與方差,即可得出結(jié)果.【題目詳解】由題中數(shù)據(jù)可得,,,所以;又,,所以.故選D【題目點撥】本題主要考查平均數(shù)與方差的比較,熟記公式即可,屬于基礎(chǔ)題型.3、B【解題分析】

利用基本元的思想,將已知條件轉(zhuǎn)化為的形式,由此求得,進而求得.【題目詳解】由于數(shù)列是等比數(shù)列,故,由于,故解得,所以.故選:B.【題目點撥】本小題主要考查等比數(shù)列通項公式的基本量的計算,考查等比數(shù)列前項和公式,屬于基礎(chǔ)題.4、B【解題分析】

根據(jù)題意可得,帶入等比數(shù)列前和即可解決?!绢}目詳解】根據(jù)題意,若的前四項之和等于第五項起以后所有項之和,則,又由是公比為的無窮等比數(shù)列,則,變形可得,則,數(shù)列為的奇數(shù)項組成的數(shù)列,則數(shù)列為公比為的等比數(shù)列;故選:B.【題目點撥】本題主要考查了利用等比數(shù)列前項和計算公比,屬于基礎(chǔ)題。5、A【解題分析】

根據(jù)投影公式,直接得到結(jié)果.【題目詳解】,.故選A.【題目點撥】本題考查了投影公式,屬于簡單題型.6、B【解題分析】

根據(jù)程序框圖可知由幾何概型計算出x,y任?。?,1)上的數(shù)時落在x2【題目詳解】解:根據(jù)程序框圖可知P為頻率,它趨近于在邊長為1的正方形中隨機取一點落在扇形內(nèi)的的概率π×故選:B【題目點撥】本題考查的知識點是程序框圖,根據(jù)已知中的程序框圖分析出程序的功能,并將問題轉(zhuǎn)化為幾何概型問題是解答本題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解題分析】所求的全面積之比為:,故選A.8、C【解題分析】

根據(jù)兩條存在斜率的直線平行,斜率相等且在縱軸上的截距不相等這一性質(zhì),可以求出的值.【題目詳解】直線的斜率為,在縱軸的截距為,因此若直線與直線互相平行,則一定有直線的斜率為,在縱軸的截距不等于,于是有且,解得,故本題選C.【題目點撥】本題考查了已知兩直線平行求參數(shù)問題.其時本題也可以運用下列性質(zhì)解題:若直線與直線平行,則有且.9、B【解題分析】

根據(jù)求出的范圍,再由區(qū)間長度比即可得出結(jié)果.【題目詳解】區(qū)間的長度為;由,解得,即,區(qū)間長度為,事件“”發(fā)生的概率是.故選B.【題目點撥】本題主要考查與長度有關(guān)的幾何概型,熟記概率計算公式即可,屬于基礎(chǔ)題型.10、C【解題分析】

根據(jù)圓錐的周長求出底面半徑,再計算圓錐的體積,從而估算堆放的稻谷數(shù).【題目詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【題目點撥】本題考查了椎體的體積計算問題,也考查了實際應(yīng)用問題,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)兩直線互相垂直的性質(zhì)可得,從而可求出的值.【題目詳解】直線和垂直,.解得.故答案為:【題目點撥】本題考查了直線的一般式,根據(jù)兩直線的位置關(guān)系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關(guān)鍵,屬于基礎(chǔ)題.12、80【解題分析】

由即可求出【題目詳解】因為是等比數(shù)列,所以,所以即故答案為:80【題目點撥】本題考查的是等比數(shù)列的性質(zhì),較簡單13、【解題分析】

利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【題目詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【題目點撥】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎(chǔ)題.14、1【解題分析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結(jié)果.詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7=a1(1-2點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.15、【解題分析】

先由作差法求出數(shù)列的通項公式為,即可計算出,然后利用常用數(shù)列的極限即可計算出的值.【題目詳解】當時,,可得;當時,由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【題目點撥】本題考查利用作差法求數(shù)列通項,同時也考查了數(shù)列極限的計算,考查計算能力,屬于中等題.16、65π【解題分析】

本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果?!绢}目詳解】如圖所示,作AB中點D,連接PD、CD,在CD上作三角形ABC的中心E,過點E作平面ABC的垂線,在垂線上取一點O,使得PO=OC。因為三棱錐底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點E的平面ABC的垂線上,因為PO=OC,P、C兩點在三棱錐的外接球的球面上,所以O(shè)點即為球心,因為平面PAB⊥平面ABC,PA=PB,D為AB中點,所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【題目點撥】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、當時,,當時,,當時,.【解題分析】

將函數(shù)的解析式化成二次函數(shù)的形式,然后把作為整體,并根據(jù)的取值范圍,結(jié)合求二次函數(shù)在閉區(qū)間上的最值的方法進行求解即可.【題目詳解】由題意得.∵,∴.當,即時,則當,即時,函數(shù)取得最小值,且;當,即時,則當,即時,函數(shù)取得最小值,且;當,即時,則當,函數(shù)取得最小值,且.綜上可得.【題目點撥】解答本題的關(guān)鍵是將問題轉(zhuǎn)化為二次函數(shù)的問題求解,求二次函數(shù)在閉區(qū)間上的最值時要結(jié)合拋物線的開口方向和對稱軸與區(qū)間的位置關(guān)系求解,體現(xiàn)了數(shù)形結(jié)合的應(yīng)用,屬于基礎(chǔ)題.18、(1)84;(2)1033;(3)存在,【解題分析】

(1)由題意可得:,即為:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由題意可得,故有;即,即必是2的整數(shù)冪,要最大,必需最大,,可得出的最大值;(3)由是公差為的等差數(shù)列,是公比為2的等比數(shù)列,可得與,可得k與m的方程,一一驗算k的值可得答案.【題目詳解】解:(1)由已知,故為:2,4,6,8,10,12,14,16;公比為2,則對應(yīng)的數(shù)為2,4,8,16,從而即為:2,4,6,8,10,12,14,16,8,4;此時(2)是首項為2,公差為2的等差數(shù)列,故,從而,而首項為2,公比為2的等比數(shù)列且,故有;即,即必是2的整數(shù)冪又,要最大,必需最大,,故的最大值為,所以,即的最大值為1033(3)由數(shù)列是公差為的等差數(shù)列知,,而是公比為2的等比數(shù)列,則,故,即,又,,則,即,則,即顯然,則,所以,將,代入驗證知,當時,上式右端為8,等式成立,此時,綜上可得:當且僅當時,存在滿足等式【題目點撥】本題主要考查等差數(shù)列、等比數(shù)列的通項公式及等差數(shù)列、等比數(shù)列前n項的和,屬于難題,注意靈活運用各公式解題與運算準確.19、(1);,,;(2)乙機床加工零件的質(zhì)量更穩(wěn)定.【解題分析】

(1)根據(jù)題中數(shù)據(jù),結(jié)合平均數(shù)與方差的公式,即可得出結(jié)果;(2)根據(jù)(1)的結(jié)果,結(jié)合平均數(shù)與方差的意義,即可得出結(jié)果.【題目詳解】(1)由題中數(shù)據(jù)可得:;,所以,;(2)兩臺機床所加工零件的直徑的平均值相同,又所以乙機床加工零件的質(zhì)量更穩(wěn)定.【題目點撥】本題主要考查平均數(shù)與方差,熟記公式即可,屬于??碱}型.20、(1);(2)22.【解題分析】

利用向量的三角形法則即可求得答案由,,可得,利用向量的數(shù)量積的坐標表示的表達式,利用三角函數(shù)知識可求最值【題目詳解】(1)=-.(2)∵∠BAC=60°,設(shè)∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴當sin(θ+φ)=1時,的最大值為22.【題目點撥】本題主要考查了三角函數(shù)與平面向量的綜合,而輔助角公式是解決三角函數(shù)的最值的常用方法,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應(yīng)用.21、(I)選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型;(II);(III)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在以下.【解題分析】

(I)由于散點圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對;兩邊取以為底底而得對數(shù),將非線性回歸的問題轉(zhuǎn)化為線性回歸的問題,利用回歸直線方程的計算公式計算出回歸直線方程,進而化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論