




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
九年級數(shù)學(xué)全冊期末復(fù)習(xí)試卷綜合測試卷(word含答案)一、選擇題1.在平面直角坐標系中,如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為﹣3和1;④b2﹣4ac>0,其中正確的命題有()A.1個 B.2個 C.3個 D.4個2.如圖,某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則應(yīng)水坡面AB的長度是()A.100m B.100m C.150m D.50m3.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±94.下列方程有兩個相等的實數(shù)根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=05.如圖,在△ABC中,D、E分別是AB、AC的中點,下列說法中不正確的是()A. B. C.△ADE∽△ABC D.6.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,7.已知2x=3y(x≠0,y≠0),則下面結(jié)論成立的是()A. B. C. D.8.如圖,內(nèi)接于⊙,,,則⊙半徑為()A.4 B.6 C.8 D.129.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.10.如圖,已知等邊△ABC的邊長為4,以AB為直徑的圓交BC于點F,CF為半徑作圓,D是⊙C上一動點,E是BD的中點,當(dāng)AE最大時,BD的長為()A. B. C.4 D.611.拋物線y=x2先向右平移1個單位,再向上平移3個單位,得到新的拋物線解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+312.已知⊙O的直徑為4,點O到直線l的距離為2,則直線l與⊙O的位置關(guān)系是A.相交 B.相切 C.相離 D.無法判斷13.拋物線的頂點坐標是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)14.有一組數(shù)據(jù):4,6,6,6,8,9,12,13,這組數(shù)據(jù)的中位數(shù)為()A.6 B.7 C.8 D.915.受益于電子商務(wù)發(fā)展和法治環(huán)境改普等多重因素,“快遞業(yè)”成為我國經(jīng)濟發(fā)展的一匹“黑馬”,2018年我國快遞業(yè)務(wù)量為600億件,預(yù)計2020年快遞量將達到950億件,若設(shè)快遞平均每年增長率為x,則下列方程中,正確的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=600二、填空題16.如圖,四邊形是半圓的內(nèi)接四邊形,是直徑,.若,則的度數(shù)為______.17.將邊長分別為,,的三個正方形按如圖所示的方式排列,則圖中陰影部分的面積為______.18.將二次函數(shù)y=2x2的圖像向上平移3個單位長度,再向右平移2個單位長度,得到的圖像所對應(yīng)的函數(shù)表達式為____.19.如圖,已知的半徑為2,內(nèi)接于,,則__________.20.如圖,用一張半徑為10cm的扇形紙板做一個圓錐形帽子(接縫忽略不計),如果做成的圓錐形帽子的高為8cm,那么這張扇形紙板的弧長是________cm.21.某一時刻身高160cm的小王在太陽光下的影長為80cm,此時他身旁的旗桿影長10m,則旗桿高為______.22.如圖,△ABC中,AB>AC,D,E兩點分別在邊AC,AB上,且DE與BC不平行.請?zhí)钌弦粋€你認為合適的條件:_____,使△ADE∽△ABC.(不再添加其他的字母和線段;只填一個條件,多填不給分?。?3.已知,二次函數(shù)的圖象如圖所示,當(dāng)y<0時,x的取值范圍是________.24.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.25.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.26.如圖,在中,,,,則的長為________.27..甲、乙、丙、丁四位同學(xué)在五次數(shù)學(xué)測驗中他們成績的平均分相等,方差分別是2.3,3.8,5.2,6.2,則成績最穩(wěn)定的同學(xué)是______.28.如圖,點O是△ABC的內(nèi)切圓的圓心,若∠A=100°,則∠BOC為_____.29.有一塊三角板,為直角,,將它放置在中,如圖,點、在圓上,邊經(jīng)過圓心,劣弧的度數(shù)等于_______30.二次函數(shù)y=2x2﹣4x+4的圖象如圖所示,其對稱軸與它的圖象交于點P,點N是其圖象上異于點P的一點,若PM⊥y軸,MN⊥x軸,則=_____.三、解答題31.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分別是邊BC、AC上的兩個動點,且DE=4,P是DE的中點,連接PA,PB,則PA+PB的最小值為_____.32.計算(1)(2)33.一只不透明的袋子中裝有標號分別為1、2、3、4、5的5個小球,這些球除標號外都相同.(1)從袋中任意摸出一個球,摸到標號為偶數(shù)的概率是;(2)先從袋中任意摸出一個球后不放回,將球上的標號作為十位上的數(shù)字,再從袋中任意摸出一個球,將球上的標號作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)是奇數(shù)的概率.34.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=035.中國古代有著輝煌的數(shù)學(xué)成就,《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》等是我國古代數(shù)學(xué)的重要文獻.(1)小聰想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為;(2)某中學(xué)擬從這4部數(shù)學(xué)名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.四、壓軸題36.如圖,⊙M與菱形ABCD在平面直角坐標系中,點M的坐標為(﹣3,1),點A的坐標為(2,0),點B的坐標為(1,﹣),點D在x軸上,且點D在點A的右側(cè).(1)求菱形ABCD的周長;(2)若⊙M沿x軸向右以每秒2個單位長度的速度平移,菱形ABCD沿x軸向左以每秒3個單位長度的速度平移,設(shè)菱形移動的時間為t(秒),當(dāng)⊙M與AD相切,且切點為AD的中點時,連接AC,求t的值及∠MAC的度數(shù);(3)在(2)的條件下,當(dāng)點M與AC所在的直線的距離為1時,求t的值.37.平面直角坐標系中,矩形OABC的頂點A,C的坐標分別為,,點D是經(jīng)過點B,C的拋物線的頂點.(1)求拋物線的解析式;(2)點E是(1)中拋物線對稱軸上一動點,求當(dāng)△EAB的周長最小時點E的坐標;(3)平移拋物線,使拋物線的頂點始終在直線CD上移動,若平移后的拋物線與射線BD只有一個公共點,直接寫出平移后拋物線頂點的橫坐標的值或取值范圍.38.如圖1(注:與圖2完全相同)所示,拋物線經(jīng)過B、D兩點,與x軸的另一個交點為A,與y軸相交于點C.(1)求拋物線的解析式.(2)設(shè)拋物線的頂點為M,求四邊形ABMC的面積(請在圖1中探索)(3)設(shè)點Q在y軸上,點P在拋物線上.要使以點A、B、P、Q為頂點的四邊形是平行四邊形,求所有滿足條件的點P的坐標(請在圖2中探索)39.如圖1,是⊙的內(nèi)接等腰三角形,點是弧上異于的一個動點,射線交底邊所在的直線于點,連結(jié)交于點.(1)求證:;(2)若,,①求的值;②如圖2,若,求;(3)若,記,面積和面積的差為,直接寫出關(guān)于的函數(shù)關(guān)系式.40.如圖,在⊙O中,弦AB、CD相交于點E,=,點D在上,連接CO,并延長CO交線段AB于點F,連接OA、OB,且OA=,tan∠OBA=.(1)求證:∠OBA=∠OCD;(2)當(dāng)△AOF是直角三角形時,求EF的長;(3)是否存在點F,使得S△CEF=4S△BOF,若存在,請求EF的長,若不存在,請說明理由.【參考答案】***試卷處理標記,請不要刪除一、選擇題1.C解析:C【解析】【分析】根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=﹣1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(﹣3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=﹣1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關(guān)系,可對③做出判斷,根據(jù)根的判別式解答即可.【詳解】由圖象可知:拋物線開口向上,對稱軸為直線x=﹣1,過(1,0)點,把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=﹣1,即:﹣=﹣1,整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(﹣3,0),因此方程ax2+bx+c=0的兩根分別為﹣3和1;故③是正確的;由圖可得,拋物線有兩個交點,所以b2﹣4ac>0,故④正確;故選C.【點睛】考查二次函數(shù)的圖象和性質(zhì),拋物線通常從開口方向、對稱軸、頂點坐標、與x軸,y軸的交點,以及增減性上尋找其性質(zhì).2.A解析:A【解析】∵堤壩橫斷面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故選A3.B解析:B【解析】【分析】兩邊直接開平方得:,進而可得答案.【詳解】解:,兩邊直接開平方得:,則,.故選:B.【點睛】此題主要考查了直接開平方法解一元二次方程,解這類問題一般要移項,把所含未知數(shù)的項移到等號的左邊,把常數(shù)項移項等號的右邊,化成的形式,利用數(shù)的開方直接求解.4.C解析:C【解析】【分析】先根據(jù)方程求出△的值,再根據(jù)根的判別式的意義判斷即可.【詳解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程沒有實數(shù)根,故本選項不符合題意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有兩個不相等的實數(shù)根,故本選項不符合題意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有兩個相等的實數(shù)根,故本選項符合題意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有兩個不相等的實數(shù)根,故本選項不符合題意;故選:C.【點睛】本題考查了根的判別式,能熟記根的判別式的意義是解此題的關(guān)鍵.5.D解析:D【解析】∵在△ABC中,點D、E分別是AB、AC的中點,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三個選項中的結(jié)論正確,D選項中結(jié)論錯誤.故選D.6.D解析:D【解析】【分析】先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.7.D解析:D【解析】【分析】根據(jù)比例的性質(zhì),把等積式寫成比例式即可得出結(jié)論.【詳解】A.由內(nèi)項之積等于外項之積,得x:3=y:2,即,故該選項不符合題意,B.由內(nèi)項之積等于外項之積,得x:3=y:2,即,故該選項不符合題意,C.由內(nèi)項之積等于外項之積,得x:y=3:2,即,故該選項不符合題意,D.由內(nèi)項之積等于外項之積,得2:y=3:x,即,故D符合題意;故選:D.【點睛】本題考查比例的性質(zhì),熟練掌握比例內(nèi)項之積等于外項之積的性質(zhì)是解題關(guān)鍵.8.C解析:C【解析】【分析】連接OB,OC,根據(jù)圓周角定理求出∠BOC的度數(shù),再由OB=OC判斷出△OBC是等邊三角形,由此可得出結(jié)論.【詳解】解:連接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等邊三角形,∴OB=BC=8.故選:C.【點睛】本題考查的是圓周角定理以及等邊三角形的判定和性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出等邊三角形是解答此題的關(guān)鍵.9.B解析:B【解析】【分析】無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構(gòu)造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.【點睛】本題考查了無理數(shù)的定義及概率的計算.10.B解析:B【解析】【分析】點E在以F為圓心的圓上運到,要使AE最大,則AE過F,根據(jù)等腰三角形的性質(zhì)和圓周角定理證得F是BC的中點,從而得到EF為△BCD的中位線,根據(jù)平行線的性質(zhì)證得CD⊥BC,根據(jù)勾股定理即可求得結(jié)論.【詳解】解:點D在⊙C上運動時,點E在以F為圓心的圓上運到,要使AE最大,則AE過F,連接CD,∵△ABC是等邊三角形,AB是直徑,∴EF⊥BC,∴F是BC的中點,∵E為BD的中點,∴EF為△BCD的中位線,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故BD=,故選:B.【點睛】本題主要考查等邊三角形的性質(zhì),圓周角定理,三角形中位線的性質(zhì)以及勾股定理,熟練并正確的作出輔助圓是解題的關(guān)鍵.11.D解析:D【解析】【分析】按“左加右減,上加下減”的規(guī)律平移即可得出所求函數(shù)的解析式.【詳解】拋物線y=x2先向右平移1個單位得y=(x﹣1)2,再向上平移3個單位得y=(x﹣1)2+3.故選D.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是是:將二次函數(shù)解析式轉(zhuǎn)化成頂點式y(tǒng)=a(x-h)2+k
(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎(chǔ)上“h值正右移,負左移;k值正上移,負下移”.12.B解析:B【解析】【分析】根據(jù)圓心距和兩圓半徑的之間關(guān)系可得出兩圓之間的位置關(guān)系.【詳解】∵⊙O的直徑為4,∴⊙O的半徑為2,∵圓心O到直線l的距離是2,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知直線l與⊙O的位置關(guān)系是相切.故選:B.【點睛】本題考查了直線和圓的位置關(guān)系的應(yīng)用,理解直線和圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵,注意:已知圓的半徑是r,圓心到直線的距離是d,當(dāng)d=r時,直線和圓相切,當(dāng)d>r時,直線和圓相離,當(dāng)d<r時,直線和圓相交.13.D解析:D【解析】【分析】根據(jù)頂點式,頂點坐標是(h,k),即可求解.【詳解】∵頂點式,頂點坐標是(h,k),∴拋物線的頂點坐標是(1,2).故選D.14.B解析:B【解析】【分析】先把這組數(shù)據(jù)按順序排列:4,6,6,6,8,9,12,13,根據(jù)中位數(shù)的定義可知:這組數(shù)據(jù)的中位數(shù)是6,8的平均數(shù).【詳解】∵一組數(shù)據(jù):4,6,6,6,8,9,12,13,∴這組數(shù)據(jù)的中位數(shù)是,故選:B.【點睛】本題考查中位數(shù)的計算,解題的關(guān)鍵是熟練掌握中位數(shù)的求解方法:先將數(shù)據(jù)按大小順序排列,當(dāng)數(shù)據(jù)個數(shù)為奇數(shù)時,最中間的那個數(shù)據(jù)是中位數(shù),當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,居于中間的兩個數(shù)據(jù)的平均數(shù)才是中位數(shù).15.C解析:C【解析】【分析】設(shè)快遞量平均每年增長率為,根據(jù)我國2018年及2020年的快遞業(yè)務(wù)量,即可得出關(guān)于的一元二次方程,此題得解.【詳解】設(shè)快遞量平均每年增長率為x,依題意,得:600(1+x)2=950.故選:C.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.二、填空題16.50【解析】【分析】連接AC,根據(jù)圓內(nèi)接四邊形的性質(zhì)求出,再利用圓周角定理求出,,計算即可.【詳解】解:連接AC,∵四邊形ABCD是半圓的內(nèi)接四邊形,∴∵DC=CB∴∵AB是直解析:50【解析】【分析】連接AC,根據(jù)圓內(nèi)接四邊形的性質(zhì)求出,再利用圓周角定理求出,,計算即可.【詳解】解:連接AC,∵四邊形ABCD是半圓的內(nèi)接四邊形,∴∵DC=CB∴∵AB是直徑∴∴故答案為:50.【點睛】本題考查的知識點有圓的內(nèi)接四邊形的性質(zhì)以及圓周角定理,熟記知識點是解題的關(guān)鍵.17.【解析】【分析】首先對圖中各點進行標注,陰影部分的面積等于正方形BEFL的面積減去梯形BENK的面積,再利用相似三角形的性質(zhì)求出BK、EN的長從而求出梯形的面積即可得出答案.【詳解】解:如解析:【解析】【分析】首先對圖中各點進行標注,陰影部分的面積等于正方形BEFL的面積減去梯形BENK的面積,再利用相似三角形的性質(zhì)求出BK、EN的長從而求出梯形的面積即可得出答案.【詳解】解:如圖所示,∵四邊形MEGH為正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面積:∴陰影部分的面積:故答案為:.【點睛】本題主要考查的知識點是圖形面積的計算以及相似三角形判定及其性質(zhì),根據(jù)相似的性質(zhì)求出相應(yīng)的邊長是解答本題的關(guān)鍵.18.y=2(x-2)2+3【解析】【分析】根據(jù)平移的規(guī)律:左加右減,上加下減可得函數(shù)解析式.【詳解】解:將拋物線y=2x2向上平移3個單位長度,再向右平移2個單位長度后,得到的拋物線的表達式為解析:y=2(x-2)2+3【解析】【分析】根據(jù)平移的規(guī)律:左加右減,上加下減可得函數(shù)解析式.【詳解】解:將拋物線y=2x2向上平移3個單位長度,再向右平移2個單位長度后,得到的拋物線的表達式為y=2(x-2)2+3,故答案為:y=2(x-2)2+3.【點睛】此題主要考查了二次函數(shù)圖象與幾何變換,關(guān)鍵是掌握平移的規(guī)律.19.【解析】分析:根據(jù)圓內(nèi)接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△AB解析:【解析】分析:根據(jù)圓內(nèi)接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.20.【解析】【分析】首先求出圓錐的底面半徑,然后可得底面周長,問題得解.【詳解】解:∵扇形的半徑為10cm,做成的圓錐形帽子的高為8cm,∴圓錐的底面半徑為cm,∴底面周長為2π×6=12解析:【解析】【分析】首先求出圓錐的底面半徑,然后可得底面周長,問題得解.【詳解】解:∵扇形的半徑為10cm,做成的圓錐形帽子的高為8cm,∴圓錐的底面半徑為cm,∴底面周長為2π×6=12πcm,即這張扇形紙板的弧長是12πcm,故答案為:12π.【點睛】本題考查圓錐的計算,用到的知識點為:圓錐的底面周長=側(cè)面展開扇形的弧長.21.20m【解析】【分析】根據(jù)相同時刻的物高與影長成比例列出比例式,計算即可.【詳解】解:設(shè)旗桿的高度為xm,根據(jù)相同時刻的物高與影長成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根據(jù)相同時刻的物高與影長成比例列出比例式,計算即可.【詳解】解:設(shè)旗桿的高度為xm,根據(jù)相同時刻的物高與影長成比例,得到160::10,解得.故答案是:20m.【點睛】本題考查的是相似三角形的應(yīng)用,掌握相似三角形的性質(zhì)是解題的關(guān)鍵.22.∠B=∠1或【解析】【分析】此題答案不唯一,注意此題的已知條件是:∠A=∠A,可以根據(jù)有兩角對應(yīng)相等的三角形相似或有兩邊對應(yīng)成比例且夾角相等三角形相似,添加條件即可.【詳解】此題答案不唯解析:∠B=∠1或【解析】【分析】此題答案不唯一,注意此題的已知條件是:∠A=∠A,可以根據(jù)有兩角對應(yīng)相等的三角形相似或有兩邊對應(yīng)成比例且夾角相等三角形相似,添加條件即可.【詳解】此題答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案為∠B=∠1或【點睛】此題考查了相似三角形的判定:有兩角對應(yīng)相等的三角形相似;有兩邊對應(yīng)成比例且夾角相等三角形相似,要注意正確找出兩三角形的對應(yīng)邊、對應(yīng)角,根據(jù)判定定理解題.23.【解析】【分析】直接利用函數(shù)圖象與x軸的交點再結(jié)合函數(shù)圖象得出答案.【詳解】解:如圖所示,圖象與x軸交于(-1,0),(3,0),故當(dāng)y<0時,x的取值范圍是:-1<x<3.故答案為:解析:【解析】【分析】直接利用函數(shù)圖象與x軸的交點再結(jié)合函數(shù)圖象得出答案.【詳解】解:如圖所示,圖象與x軸交于(-1,0),(3,0),故當(dāng)y<0時,x的取值范圍是:-1<x<3.故答案為:-1<x<3.【點睛】此題主要考查了拋物線與x軸的交點,正確數(shù)形結(jié)合分析是解題關(guān)鍵.24.【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的解析:【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,25.【解析】【分析】【詳解】解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2解析:【解析】【分析】【詳解】解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,得出A′點位置是解題關(guān)鍵.26.【解析】【分析】過點作的垂線,則得到兩個直角三角形,根據(jù)勾股定理和正余弦公式,求的長.【詳解】過作于點,設(shè),則,因為,所以,則由勾股定理得,因為,所以,則.則.【點睛】本題考查勾股定解析:【解析】【分析】過點作的垂線,則得到兩個直角三角形,根據(jù)勾股定理和正余弦公式,求的長.【詳解】過作于點,設(shè),則,因為,所以,則由勾股定理得,因為,所以,則.則.【點睛】本題考查勾股定理和正余弦公式的運用,要學(xué)會通過作輔助線得到特殊三角形,以便求解.27.甲【解析】【分析】方差反映了一組數(shù)據(jù)的波動情況,方差越小越穩(wěn)定,據(jù)此可判斷.【詳解】∵2.3<3.8<5.2<6.2,∴,∴成績最穩(wěn)定的是甲.故答案為:甲.【點睛】本題考查了方差解析:甲【解析】【分析】方差反映了一組數(shù)據(jù)的波動情況,方差越小越穩(wěn)定,據(jù)此可判斷.【詳解】∵2.3<3.8<5.2<6.2,∴,∴成績最穩(wěn)定的是甲.故答案為:甲.【點睛】本題考查了方差的概念,正確理解方差所表示的意義是解題的關(guān)鍵.28.140°.【解析】【分析】根據(jù)內(nèi)心的定義可知OB、OC為∠ABC和∠ACB的角平分線,根據(jù)三角形內(nèi)角和定理可求出∠OBC+∠OCB的度數(shù),進而可求出∠BOC的度數(shù).【詳解】∵點O是△ABC解析:140°.【解析】【分析】根據(jù)內(nèi)心的定義可知OB、OC為∠ABC和∠ACB的角平分線,根據(jù)三角形內(nèi)角和定理可求出∠OBC+∠OCB的度數(shù),進而可求出∠BOC的度數(shù).【詳解】∵點O是△ABC的內(nèi)切圓的圓心,∴OB、OC為∠ABC和∠ACB的角平分線,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案為:140°【點睛】本題考查了三角形內(nèi)心的定義及三角形內(nèi)角和定理,熟練掌握三角形內(nèi)切圓的圓心是三角形三條角平分線的交點是解題關(guān)鍵.29.120°【解析】【分析】因為半徑相等,根據(jù)等邊對等角結(jié)合三角形內(nèi)角和定理即可求得,繼而求得答案.【詳解】如圖,連接OA,∵OA,OB為半徑,∴,∴,∴劣弧的度數(shù)等于,故答案為:1解析:120°【解析】【分析】因為半徑相等,根據(jù)等邊對等角結(jié)合三角形內(nèi)角和定理即可求得,繼而求得答案.【詳解】如圖,連接OA,∵OA,OB為半徑,∴,∴,∴劣弧的度數(shù)等于,故答案為:120.【點睛】本題考查了圓心角、弧、弦之間的關(guān)系以及圓周角定理,是基礎(chǔ)知識要熟練掌握.30.【解析】【分析】根據(jù)題目中的函數(shù)解析式可得到點P的坐標,然后設(shè)出點M、點N的坐標,然后計算即可解答本題.【詳解】解:∵二次函數(shù)y=2x2﹣4x+4=2(x﹣1)2+2,∴點P的坐標為(1解析:【解析】【分析】根據(jù)題目中的函數(shù)解析式可得到點P的坐標,然后設(shè)出點M、點N的坐標,然后計算即可解答本題.【詳解】解:∵二次函數(shù)y=2x2﹣4x+4=2(x﹣1)2+2,∴點P的坐標為(1,2),設(shè)點M的坐標為(a,2),則點N的坐標為(a,2a2﹣4a+4),∴===2,故答案為:2.【點睛】本題考查了二次函數(shù)與幾何的問題,解題的關(guān)鍵是求出點P左邊,設(shè)出點M、點N的坐標,表達出.三、解答題31.【解析】【分析】連接PC,則PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出結(jié)果.【詳解】解:連接PC,則PC=DE=2,∴P在以C為圓心,2為半徑的圓弧上運動,在CB上截取CM=0.25,連接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴當(dāng)P、M、A共線時,PA+PB最小,即.【點睛】本題考查了最短路徑問題,相似三角形的判定與性質(zhì),正確做出輔助線是解題的關(guān)鍵.32.(1)2;(2),【解析】【分析】(1)按照開立方,零指數(shù)冪,正整數(shù)指數(shù)冪的法則計算即可;(2)用因式分解法解一元二次方程即可.【詳解】(1)解:原式=(2)解:或【點睛】本題主要考查實數(shù)的混合運算和解一元二次方程,掌握實數(shù)混合運算的法則和因式分解法是解題的關(guān)鍵.33.(1);(2)組成的兩位數(shù)是奇數(shù)的概率為.【解析】【分析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有20種等可能的結(jié)果數(shù),找出組成的兩位數(shù)是奇數(shù)的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)從袋中任意摸出一個球,摸到標號為偶數(shù)的概率;故答案為:;(2)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中組成的兩位數(shù)是奇數(shù)的結(jié)果數(shù)為12,所以組成的兩位數(shù)是奇數(shù)的概率.【點睛】本題主要考查了列表法與樹狀圖法求概率,利用列表法或樹狀圖法展示所有等可能的結(jié)果,再從中選出符合事件或的結(jié)果數(shù)目,然后利用概率公式計算事件或事件的概率.34.(1)x1=4,x2=﹣6;(2)x1=2+,x2=2﹣【解析】【分析】(1)利用直接開平方法解出方程;(2)先求出一元二次方程的判別式,再解出方程.【詳解】解:(1)(x+1)2﹣25=0,(x+1)2=25,x+1=±5,x=±5﹣1,x1=4,x2=﹣6;(2)x2﹣4x﹣2=0,∵a=1,b=﹣4,c=﹣2,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣2)=24>0,∴x==2±,即x1=2+,x2=2﹣.【點睛】本題考查了一元二次方程的解法,熟練掌握求根公式是解題關(guān)鍵.35.(1);(2)【解析】【分析】(1)根據(jù)小聰選擇的數(shù)學(xué)名著有四種可能,而他選中《九章算術(shù)》只有一種情況,再根據(jù)概率公式解答即可;(2)此題需要兩步完成,所以可采用樹狀圖法或者采用列表法求解.【詳解】解:(1)小聰想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為.故答案為;(2)將四部名著《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》分別記為A,B,C,D,記恰好選中《九章算術(shù)》和《孫子算經(jīng)》為事件M.方法一:用列表法列舉出從4部名著中選擇2部所能產(chǎn)生的全部結(jié)果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的結(jié)果有12種,并且這12種結(jié)果出現(xiàn)的可能性相等,所有可能的結(jié)果中,滿足事件M的結(jié)果有2種,即DB,BD,∴P(M)=.方法二:根據(jù)題意可以畫出如下的樹狀圖:由樹狀圖可以看出,所有可能的結(jié)果有12種,并且這12種結(jié)果出現(xiàn)的可能性相等,所有可能的結(jié)果中,滿足事件M的結(jié)果有2種,即BD,DB,∴P(M)=.故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.四、壓軸題36.(1)菱形的周長為8;(2)t=,∠MAC=105°;(3)當(dāng)t=1﹣或t=1+時,圓M與AC相切.【解析】試題分析:(1)過點B作BE⊥AD,垂足為E.由點A和點B的坐標可知:BE=,AE=1,依據(jù)勾股定理可求得AB的長,從而可求得菱形的周長;(2)記M與x軸的切線為F,AD的中點為E.先求得EF的長,然后根據(jù)路程=時間×速度列出方程即可;平移的圖形如圖3所示:過點B作BE⊥AD,垂足為E,連接MF,F(xiàn)為M與AD的切點.由特殊銳角三角函數(shù)值可求得∠EAB=60°,依據(jù)菱形的性質(zhì)可得到∠FAC=60°,然后證明△AFM是等腰直角三角形,從而可得到∠MAF的度數(shù),故此可求得∠MAC的度數(shù);(3)如圖4所示:連接AM,過點作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.先求得∠MAE=30°,依據(jù)特殊銳角三角函數(shù)值可得到AE的長,然后依據(jù)3t+2t=5-AE可求得t的值;如圖5所示:連接AM,過點作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.依據(jù)菱形的性質(zhì)和切線長定理可求得∠MAE=60°,然后依據(jù)特殊銳角三角函數(shù)值可得到EA=,最后依據(jù)3t+2t=5+AE.列方程求解即可.試題解析:()如圖1所示:過點作,垂足為,∵,,∴,,∴,∵四邊形為菱形,∴,∴菱形的周長.()如圖2所示,⊙與軸的切線為,中點為,∵,∴,∵,且為中點,∴,,∴,解得.平移的圖形如圖3所示:過點作,垂足為,連接,為⊙與切點,∵由()可知,,,∴,∴,∴,∵四邊形是菱形,∴,∵為切線,∴,∵為的中點,∴,∴是等腰直角三角形,∴,∴.()如圖4所示:連接,過點作,垂足為,作,垂足為,∵四邊形為菱形,,∴.∵、是圓的切線∴,∵.∴,∴,∴.如圖5所示:連接,過點作,垂足為,作,垂足為,∵四邊形為菱形,,∴,∴,∵、是圓的切線,∴,∵,∴,∴,∴.綜上所述,當(dāng)或時,圓與相切.點睛:此題是一道圓的綜合題.圓中的方法規(guī)律總結(jié):1、分類討論思想:研究點、直線和圓的位置關(guān)系時,就要從不同的位置關(guān)系去考慮,即要全面揭示點、直線和元的各種可能的位置關(guān)系.這種位置關(guān)系的考慮與分析要用到分類討論思想.1、轉(zhuǎn)化思想:(1)化“曲面”為“平面”(2)化不規(guī)則圖形面積為規(guī)則圖形的面積求解.3、方程思想:再與圓有關(guān)的計算題中,除了直接運用公式進行計算外,有時根據(jù)圖形的特點,列方程解答,思路清楚,過程簡捷.37.(1);(2);(3)或【解析】【分析】(1)根據(jù)題意可得出點B的坐標,將點B、C的坐標分別代入二次函數(shù)解析式,求出b、c的值即可.(2)在對稱軸上取一點E,連接EC、EB、EA,要使得EAB的周長最小,即要使EB+EA的值最小,即要使EA+EC的值最小,當(dāng)點C、E、A三點共線時,EA+EC最小,求出直線AC的解析式,最后求出直線AC與對稱軸的交點坐標即可.(3)求出直線CD以及射線BD的解析式,即可得出平移后頂點的坐標,寫出二次函數(shù)頂點式解析式,分類討論,如圖:①當(dāng)拋物線經(jīng)過點B時,將點B的坐標代入二次函數(shù)解析式,求出m的值,寫出m的范圍即可;②當(dāng)拋物線與射線恰好只有一個公共點H時,將拋物線解析式與射線解析式聯(lián)立可得關(guān)于x的一元二次方程,要使平移后的拋物線與射線BD只有一個公共點,即要使一元二次方程有兩個相等的實數(shù)根,即,列式求出m的值即可.【詳解】(1)矩形OABC,OC=AB,A(2,0),C(0,3),OA=2,OC=3,B(2,3),將點B,C的坐標分別代入二次函數(shù)解析式,,,拋物線解析式為:.(2)如圖,在對稱軸上取一點E,連接EC、EB、EA,當(dāng)點C、E、A三點共線時,EA+EC最小,即EAB的周長最小,設(shè)直線解析式為:y=kx+b,將點A、C的坐標代入可得:,解得:,一次函數(shù)解析式為:.=,D(1,4),令x=1,y==.E(1,).(3)設(shè)直線CD解析式為:y=kx+b,C(0,3),D(1,4),,解得,直線CD解析式為:y=x+3,同理求出射線BD的解析式為:y=-x+5(x≤2),設(shè)平移后的頂點坐標為(m,m+3),則拋物線解析式為:y=-(x-m)2+m+3,①如圖,當(dāng)拋物線經(jīng)過點B時,-(2-m)2+m+3=3,解得m=1或4,當(dāng)1<m≤4時,平移后的拋物線與射線只有一個公共點;②如圖,當(dāng)拋物線與射線恰好只有一個公共點H時,將拋物線解析式與射線解析式聯(lián)立可得:-(x-m)2+m+3=-x+5,即x2-(2m+1)x+m2-m+2=0,要使平移后的拋物線與射線BD只有一個公共點,即要使一元二次方程有兩個相等的實數(shù)根,,解得.綜上所述,或時,平移后的拋物線與射線BD只有一個公共點.【點睛】本題為二次函數(shù)、一次函數(shù)與幾何、一元二次方程方程綜合題,一般作為壓軸題,主要考查了圖形的軸對稱、二次函數(shù)的平移、函數(shù)解析式的求解以及二次函數(shù)與一元二次方程的關(guān)系,本題關(guān)鍵在于:①將三角形的周長最小問題轉(zhuǎn)化為兩線段之和最小問題,利用軸對稱的性質(zhì)解題;②將二次函數(shù)與一次函數(shù)的交點個數(shù)問題轉(zhuǎn)化為一元二次方程實數(shù)根的個數(shù)問題.38.(1);(2);(3)點P的坐標為:或(4,)或(,).【解析】【分析】(1)由圖可知點B、點D的坐標,利用待定系數(shù)法,即可求出拋物線的解析式;(2)過點M作ME⊥AB于點E,由二次函數(shù)的性質(zhì),分別求出點A、C、M的坐標,然后得到OE、BE的長度,再利用切割法求出四邊形的面積即可;(3)由點Q在y軸上,設(shè)Q(0,y),由平行四邊形的性質(zhì),根據(jù)題意可分為:①當(dāng)AB為對角線時;②當(dāng)BQ2為對角線時;③當(dāng)AQ3為對角線時;分別求出三種情況的點P的坐標,即可得到答案.【詳解】解:(1)根據(jù)題意,拋物線經(jīng)過B、D兩點,點D為(,),點B為(3,0),則,解得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題22 能源與可持續(xù)發(fā)展-2025年中考《物理》一輪復(fù)習(xí)知識清單與解題方法
- 二零二五年度藥品研發(fā)成果許可與銷售分成合同范本
- 2025年度勞動合同法企業(yè)勞動爭議調(diào)解中心設(shè)立合同
- 河道整治砂石運輸合同模板
- 2025年度生物科技行業(yè)勞動合同解除協(xié)議范本
- 2025年度供應(yīng)鏈金融應(yīng)收賬款回款合作協(xié)議
- 家具銷售居間合同文件資料
- 2025年度品牌連鎖店鋪授權(quán)經(jīng)營合同
- 2025年度山林資源承包與生態(tài)補償金支付合同書
- 二零二五年度企業(yè)員工績效對賭合作框架協(xié)議
- 《選材專項訓(xùn)練》課件
- 附著式升降腳手架安裝平臺和架體檢查驗收表
- 小兒麻疹的護理查房
- DL-T 2574-2022 混流式水輪機維護檢修規(guī)程
- 《鋼鐵是怎樣煉成的》讀書分享課件
- GB/T 19830-2023石油天然氣工業(yè)油氣井套管或油管用鋼管
- 思想旗領(lǐng)航向心得體會
- 律師事務(wù)所章程
- 醫(yī)院合法性審查制度
- (新插圖)人教版四年級下冊數(shù)學(xué) 第2招 巧算24點 期末復(fù)習(xí)課件
- 駕駛員違規(guī)違章安全教育談話記錄表
評論
0/150
提交評論