版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天津市2023年九年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.把拋物線向下平移1個單位再向右平移一個單位所得到的的函數(shù)拋物線的解析式是()A. B. C. D.2.如圖,在中,,過重心作、的垂線,垂足分別為、,則四邊形的面積與的面積之比為()A. B. C. D.3.一件商品的原價是100元,經(jīng)過兩次提價后的價格為121元,如果每次提價的百分率都是x,根據(jù)題意,下面列出的方程正確的是()A.100(1+x)=121 B.100(1-x)=121 C.100(1+x)2=121 D.100(1-x)2=1214.已知一條拋物線的表達式為,則將該拋物線先向右平移個單位長度,再向上平移個單位長度,得到的新拋物線的表達式為()A. B. C. D.5.如圖是正方體的一種平面展開圖,它的每個面上都有一個漢字,那么在原正方體的表面上,與漢字“治”相對的面上的漢字是()A.全 B.面 C.依 D.法6.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為12,則C點坐標為()A.(6,4) B.(6,2) C.(4,4) D.(8,4)7.二次函數(shù)y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,則t的值為()A.0 B. C.1 D.28.如圖,A、B、C是⊙O上的三點,已知∠O=50°,則∠C的大小是()A.50° B.45° C.30° D.25°9.平面直角坐標系內(nèi)點關于點的對稱點坐標是()A.(-2,?-1) B.(-3,?-1) C.(-1,?-2) D.(-1,?-3)10.下列事件中,是必然事件的是()A.任意買一張電影票,座位號是2的倍數(shù)B.13個人中至少有兩個人生肖相同C.車輛隨機到達一個路口,遇到紅燈D.明天一定會下雨二、填空題(每小題3分,共24分)11.如圖,在平行四邊形ABCD中,點E在AD邊上,且AE:ED=1:2,若EF=4,則CE的長為___12.函數(shù)的自變量的取值范圍是.13.如圖,兩弦AB、CD相交于點E,且AB⊥CD,若∠B=60°,則∠A等于_____度.14.如圖,矩形ABOC的頂點B、C分別在x軸、y軸上,頂點A在第一象限,點B的坐標為(,0),將線段OC繞點O順時針旋轉(zhuǎn)60°至線段OD,若反比例函數(shù)(k≠0)的圖象進過A、D兩點,則k值為_____.15.如圖,⊙O為△ABC的內(nèi)切圓,D、E、F分別為切點,已知∠C=90°,⊙O半徑長為1cm,BC=3cm,則AD長度為__cm.16.如圖,正方形的邊長為,在邊上分別取點,,在邊上分別取點,使.....依次規(guī)律繼續(xù)下去,則正方形的面積為__________.17.一棵參天大樹,樹干周長為3米,地上有一根常春藤恰好繞了它5圈,藤尖離地面20米高,那么這根常春藤至少有____米.18.已知圓的半徑是,則該圓的內(nèi)接正六邊形的面積是__________三、解答題(共66分)19.(10分)在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=1.(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;(2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并直接寫出A、C兩點的坐標;(3)根據(jù)(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標.20.(6分)如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.21.(6分)在矩形中,,,是射線上的點,連接,將沿直線翻折得.(1)如圖①,點恰好在上,求證:∽;(2)如圖②,點在矩形內(nèi),連接,若,求的面積;(3)若以點、、為頂點的三角形是直角三角形,則的長為.22.(8分)某體育看臺側(cè)面的示意圖如圖所示,觀眾區(qū)的坡度為,頂端離水平地面的高度為,從頂棚的處看處的仰角,豎直的立桿上、兩點間的距離為,處到觀眾區(qū)底端處的水平距離為.求:(1)觀眾區(qū)的水平寬度;(2)頂棚的處離地面的高度.(,,結(jié)果精確到)23.(8分)如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.(1)分別求出直線、雙曲線的函數(shù)表達式.(2)求出點D的坐標.(3)利用圖象直接寫出:當x在什么范圍內(nèi)取值時?24.(8分)先化簡,再求值:(1+)÷,其中a=1.25.(10分)如圖,是的直徑,是弦,是弧的中點,過點作的切線交的延長線于點,過點作于點,交于點.(1)求證:;(2)若,,求的長.26.(10分)在平面直角坐標系xOy中,有任意三角形,當這個三角形的一條邊上的中線等于這條邊的一半時,稱這個三角形叫“和諧三角形”,這條邊叫“和諧邊”,這條中線的長度叫“和諧距離”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),這個點中,能與點O組成“和諧三角形”的點是,“和諧距離”是;(2)連接BD,點M,N是BD上任意兩個動點(點M,N不重合),點E是平面內(nèi)任意一點,△EMN是以MN為“和諧邊”的“和諧三角形”,求點E的橫坐標t的取值范圍;(3)已知⊙O的半徑為2,點P是⊙O上的一動點,點Q是平面內(nèi)任意一點,△OPQ是“和諧三角形”,且“和諧距離”是2,請描述出點Q所在位置.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行解答即可.【詳解】解:拋物線向下平移1個單位,得:,再向右平移1個單位,得:,即:,故選B.【點睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.2、C【分析】連接AG并延長交BC于點F,根據(jù)G為重心可知,AG=2FG,CF=BF,再證明△ADG∽△GEF,得出,設矩形CDGE中,DG=a,EG=b,用含a,b的式子將AC,BC的長表示出來,再列式化簡即可求出結(jié)果.【詳解】解:連接AG并延長交BC于點F,根據(jù)G為重心可知,AG=2FG,CF=BF,易得四邊形GDCE為矩形,∴DG∥BC,DG=CD=EG=CE,∠CDG=∠CEG=90°,∴∠AGD=∠AFC,∠ADG=∠GEF=90°,∴△ADG∽△GEF,∴.設矩形CDGE中,DG=a,EG=b,∴AC=AD+CD=2EG+EG=3b,BC=2CF=2(CE+EF)=2(DG+)=3a,∴.故選:C.【點睛】本題主要考查重心的概念及相似的判定與性質(zhì)以及矩形的性質(zhì),正確作出輔助線構(gòu)造相似三角形是解題的突破口,掌握基本概念和性質(zhì)是解題的關鍵.3、C【詳解】試題分析:對于增長率的問題的基本公式為:增長前的數(shù)量×=增長后的數(shù)量.由題意,可列方程為:100(1+x)2=121,故答案為:C考點:一元二次方程的應用4、A【分析】可根據(jù)二次函數(shù)圖像左加右減,上加下減的平移規(guī)律進行解答.【詳解】二次函數(shù)向右平移個單位長度得,,再向上平移個單位長度得即故選A.【點睛】本題考查了二次函數(shù)的平移,熟練掌握平移規(guī)律是解題的關鍵.5、C【分析】首先將展開圖折疊,即可得出與漢字“治”相對的面上的漢字.【詳解】由題意,得與漢字“治”相對的面上的漢字是“依”,故答案為C.【點睛】此題主要考查對正方體展開圖的認識,熟練掌握,即可解題.6、A【分析】直接利用位似圖形的性質(zhì)結(jié)合相似比得出AD的長,進而得出△OAD∽△OBG,進而得出AO的長,即可得出答案.【詳解】∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴∴解得:OA=2,∴OB=6,∴C點坐標為:(6,4),故選A.【點睛】此題主要考查了位似變換以及相似三角形的判定與性質(zhì),正確得出AO的長是解題關鍵.7、C【解析】根據(jù)二次函數(shù)的對稱軸方程計算.【詳解】解:∵二次函數(shù)y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,∴﹣=0,解得,t=1,故選:C.【點睛】本題考查二次函數(shù)對稱軸性質(zhì),熟練掌握對稱軸的公式是解題的關鍵.8、D【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:∵∠C與∠AOB是同弧所對的圓周角與圓心角,
∵∠AOB=2∠C=50°,
∴∠C=∠AOB=25°.
故選:D.【點睛】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關鍵.9、B【解析】通過畫圖和中心對稱的性質(zhì)求解.【詳解】解:如圖,點P(1,1)關于點Q(?1,0)的對稱點坐標為(?3,?1).故選B.【點睛】本題考查了坐標與圖形變化-旋轉(zhuǎn):圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.10、B【解析】必然事件就是一定發(fā)生的事件,結(jié)合不可能事件、隨機事件的定義依據(jù)必然事件的定義逐項進行判斷即可.【詳解】A、“任意買一張電影票,座位號是2的倍數(shù)”是隨機事件,故此選項錯誤;B、“13個人中至少有兩個人生肖相同”是必然事件,故此選項正確;C、“車輛隨機到達一個路口,遇到紅燈”是隨機事件,故此選項錯誤;D、“明天一定會下雨”是隨機事件,故此選項錯誤,故選B.【點睛】本題考查了隨機事件.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)AE:ED=1:2,得到BC=3AE,證明△DEF∽△BCF,得到,求出FC,即可求出CE.【詳解】解:∵AE:ED=1:2,∴DE=2AE,∵四邊形ABCD是平行四邊形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案為:1.【知識點】本題考查平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì),理解相似三角形的判定與性質(zhì)定理是解題關鍵.12、x≠1【解析】該題考查分式方程的有關概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠113、30【解析】首先根據(jù)圓周角定理,得∠A=∠BDC,再根據(jù)三角形的內(nèi)角和定理即可求得∠BDC的度數(shù),從而得出結(jié)論.【詳解】∵AB⊥CD,∴∠DEB=90°,∵∠B=60°∴∠BDC=90°-∠B=90°-60°=30°,∴∠A=∠BDC=30°,故答案為30°.【點睛】綜合運用了圓周角定理以及三角形的內(nèi)角和定理.14、4【分析】過點D作DH⊥x軸于H,四邊形ABOC是矩形,由性質(zhì)有AB=CO,∠COB=90°,將OC繞點O順時針旋轉(zhuǎn)60°,OC=OD,∠COD=60°,可得∠DOH=30°,設DH=x,點D(x,x),點A(,2x),反比例函數(shù)(k≠0)的圖象經(jīng)過A、D兩點,構(gòu)造方程求出即可.【詳解】解:如圖,過點D作DH⊥x軸于H,∵四邊形ABOC是矩形,∴AB=CO,∠COB=90°,∵將線段OC繞點O順時針旋轉(zhuǎn)60°至線段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH=DH,設DH=x,∴點D(x,x),點A(,2x),∵反比例函數(shù)(k≠0)的圖象經(jīng)過A、D兩點,∴x×x=×2x,∴x=2,∴點D(2,2),∴k=2×2=4,故答案為:4.【點睛】本題考查反比例函數(shù)解析式問題,關鍵利用矩形的性質(zhì)與旋轉(zhuǎn)找到AB=CO=OD,∠DOH=30°,DH=x,會用x表示點D(x,x),點A(,2x),利用A、D在反比例函數(shù)(k≠0)的圖象上,構(gòu)造方程使問題得以解決.15、3【分析】如圖,連接OD、OE、OF,由切線的性質(zhì)和切線長定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接著證明四邊形OECF為正方形,則CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的長.【詳解】解:如圖,連接OE,OF,OD,∵⊙O為△ABC內(nèi)切圓,與三邊分別相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四邊形OECF為矩形而OF=OE,∴四邊形OECF為正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案為:3【點睛】本題考查了三角形的內(nèi)切圓與內(nèi)心,切線的性質(zhì),切線長定理,勾股定理,正方形的判定和性質(zhì),熟悉切線長定理是本題的關鍵.16、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面積,同理可求出正方形A2B2C2D2的面積,得出規(guī)律即可得答案.【詳解】∵正方形ABCD的邊長為a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面積為a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面積為()2a2,……∴正方形的面積為()na2,故答案為:()na2【點睛】本題考查正方形的性質(zhì)及勾股定理,正確計算各正方形的面積并得出規(guī)律是解題關鍵.17、25【分析】如下圖,先分析常春藤一圈展開圖,求得常春藤一圈的長度后,再求總長度.【詳解】如下圖,是常春藤恰好繞樹的圖形∵繞5圈,藤尖離地面20米∴常春藤每繞1圈,對應的高度為20÷5=4米我們將繞樹干1圈的圖形展開如下,其中,AB表示樹干一圈的長度,AC表示常春藤繞樹干1圈的高度,BC表示常春藤繞樹干一圈的長度∴在Rt△ABC中,BC=5∴常春藤總長度為:5×5=25米故答案為:25【點睛】本題考查側(cè)面展開圖的運算,解題關鍵是將題干中的樹干展開為如上圖△ABC的形式.18、【分析】根據(jù)正六邊形被它的半徑分成六個全等的等邊三角形,再根據(jù)等邊三角形的邊長,求出等邊三角形的高,再根據(jù)面積公式即可得出答案.【詳解】解:連接、,作于,等邊三角形的邊長是2,,等邊三角形的面積是,正六邊形的面積是:;故答案為:.【點睛】本題考查的是正多邊形和圓的知識,解題的關鍵要記住正六邊形的特點,它被半徑分成六個全等的等邊三角形.三、解答題(共66分)19、(1)見解析;(2)(0,1),(﹣3,1);(3)(0,﹣1),(3,﹣5),(3,﹣1).【分析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出B、C的對應點B1、C1即可;(2)利用B點坐標畫出直角坐標系,然后寫出A、C的坐標;(3)利用關于原點對稱的點的坐標特征寫出點A2、B2、C2的坐標,然后描點即可.【詳解】解:(1)如圖,△AB1C1為所作;(2)如圖,A點坐標為(0,1),C點的坐標為(﹣3,1);(3)如圖,△A2B2C2為所作,點A2、B2、C2的坐標煩惱為(0,﹣1),(3,﹣5),(3,﹣1).【點睛】本題考查的是平面直角坐標系,需要熟練掌握旋轉(zhuǎn)的性質(zhì)以及平面直角坐標系中點的特征.20、(1)y=-(x-6)2+2.6;(2)球能過網(wǎng);球會出界.【解析】解:(1)∵h=2.6,球從O點正上方2m的A處發(fā)出,∴y=a(x-6)2+h過(0,2)點,∴2=a(0-6)2+2.6,解得:a=-,所以y與x的關系式為:y=-(x-6)2+2.6.(2)當x=9時,y=-(x-6)2+2.6=2.45>2.43,所以球能過網(wǎng);當y=0時,-(x-6)2+2.6=0,解得:x1=6+2>18,x2=6-2(舍去),所以會出界.21、(1)見解析;(2)的面積為;(3)、5、1、【分析】(1)先說明∠CEF=∠AFB和,即可證明∽;(2)過點作交與點,交于點,則;再結(jié)合矩形的性質(zhì),證得△FGE∽△AHF,得到AH=5GF;然后運用勾股定理求得GF的長,最后運用三角形的面積公式解答即可;(3)分點E在線段CD上和DC的延長線上兩種情況,然后分別再利用勾股定進行解答即可.【詳解】(1)解:∵矩形中,∴由折疊可得∵∴∴在和中∵,∴∽(2)解:過點作交與點,交于點,則∵矩形中,∴由折疊可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面積為(3)設DE=x,以點E、F、C為頂點的三角形是直角三角形,則:①當點E在線段CD上時,∠DAE<45°,∴∠AED>45°,由折疊性質(zhì)得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,當∠EFC=90°時,如圖所示:由折疊性質(zhì)可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴點A,F(xiàn),C在同一條線上,即:點F在矩形的對角線AC上,在Rt△ACD中,AD=5,CD=AB=3,根據(jù)勾股定理得,AC=,由折疊可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(-5)2=(3-x)2,解得x=即:DE=b,當∠ECF=90°時,如圖所示:點F在BC上,由折疊知,EF=DE=x,AF=AD=5,在Rt△ABF中,根據(jù)勾股定理得,BF==4,∴CF=BC-BF=1,在Rt△ECF中,根據(jù)勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=,即:DE=;②當點E在DC延長線上時,CF在∠AFE內(nèi)部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、當∠CEF=90°時,如圖所示由折疊知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四邊形AFED是正方形,∴DE=AF=5;b、當∠ECF=90°時,如圖所示:∵∠ABC=∠BCD=90°,∴點F在CB的延長線上,∴∠ABF=90°,由折疊知,EF=DE=x,AF=AD=5,在Rt△ABF中,根據(jù)勾股定理得,BF==4,∴CF=BC+BF=9,在Rt△ECF中,根據(jù)勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=1,即DE=1,故答案為、、5、1.【點睛】本題屬于相似形綜合題,主要考查了相似三角形的判定和性質(zhì)、折疊的性質(zhì)、勾股定理等知識點,正確作出輔助線構(gòu)造相似三角形和直角三角形是解答本題的關鍵.22、(1)觀眾區(qū)的水平寬度為;(2)頂棚的處離地面的高度約為.【分析】(1)利用坡度的性質(zhì)進一步得出,然后據(jù)此求解即可;(2)作于,于,則四邊形、為矩形,再利用三角函數(shù)進一步求出EN長度,然后進一步求出答案即可.【詳解】(1)觀眾區(qū)的坡度為,頂端離水平地面的高度為,∴,,答:觀眾區(qū)的水平寬度為;(2)如圖,作于,于,則四邊形、為矩形,m,m,m,在中,,則m,,答:頂棚的處離地面的高度約為.【點睛】本題主要考查了三角函數(shù)的實際應用,熟練掌握相關方法是解題關鍵.23、(1),;(2)點D的坐標是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入雙曲線得到k的值;(2)解由兩個函數(shù)的解析式組成的方程組,即可得交點坐標D;
(3)觀察圖象得到當-3<x<-2時一次函數(shù)的函數(shù)值比反比例函數(shù)的函數(shù)值要大.【詳解】解:(1)∵點在的圖象上;∴,解得,則.∵在的圖象上,∴,解得,∴.(2)聯(lián)立得,解得,或,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代醫(yī)療用品的冷鏈物流管理策略
- 現(xiàn)代農(nóng)業(yè)技術推廣與農(nóng)業(yè)可持續(xù)發(fā)展
- 媽媽班活動方案國慶節(jié)
- 2023八年級物理上冊 第二章 物質(zhì)世界的尺度、質(zhì)量和密度第二節(jié) 物體的質(zhì)量及其測量說課稿 (新版)北師大版
- 4《同學相伴》第一課時 說課稿-2023-2024學年道德與法治三年級下冊統(tǒng)編版
- 《6~9的加減法-用減法解決問題》說課稿-2024-2025學年一年級上冊數(shù)學人教版001
- 1少讓父母為我擔心(說課稿)-統(tǒng)編版(五四制)道德與法治四年級上冊
- 2024-2025學年高中物理 第四章 勻速圓周運動 第3節(jié) 向心力的實例分析說課稿 魯科版必修2
- Unit3《It's a colourful world!》(說課稿)-2024-2025學年外研版(三起)(2024)英語三年級上冊(2課時)
- Unit 4 I have a pen pal Part B Let's learn(說課稿)-2023-2024學年人教PEP版英語六年級上冊
- (二模)遵義市2025屆高三年級第二次適應性考試試卷 地理試卷(含答案)
- 二零二五隱名股東合作協(xié)議書及公司股權代持及回購協(xié)議
- 浙江省湖州是吳興區(qū)2024年中考語文二模試卷附參考答案
- 風電設備安裝施工專項安全措施
- IQC培訓課件教學課件
- 2025年計算機二級WPS考試題目
- 高管績效考核全案
- 2024年上海市中考英語試題和答案
- 教育部《中小學校園食品安全和膳食經(jīng)費管理工作指引》知識培訓
- 長沙醫(yī)學院《無機化學》2021-2022學年第一學期期末試卷
- eras婦科腫瘤圍手術期管理指南解讀
評論
0/150
提交評論