反比例函數(shù)的圖象和性質(zhì)八年級(jí)數(shù)學(xué)_第1頁
反比例函數(shù)的圖象和性質(zhì)八年級(jí)數(shù)學(xué)_第2頁
反比例函數(shù)的圖象和性質(zhì)八年級(jí)數(shù)學(xué)_第3頁
反比例函數(shù)的圖象和性質(zhì)八年級(jí)數(shù)學(xué)_第4頁
反比例函數(shù)的圖象和性質(zhì)八年級(jí)數(shù)學(xué)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

反比例函數(shù)的圖象和性質(zhì)八年級(jí)數(shù)學(xué)匯報(bào)人:XXX2024-01-22目錄contents反比例函數(shù)基本概念反比例函數(shù)圖象繪制反比例函數(shù)性質(zhì)探究反比例函數(shù)應(yīng)用舉例拓展:反比例函數(shù)與一次函數(shù)關(guān)系總結(jié)回顧與課堂練習(xí)反比例函數(shù)基本概念01形如$y=frac{k}{x}$($k$為常數(shù),$kneq0$)的函數(shù)稱為反比例函數(shù)。反比例函數(shù)定義反比例函數(shù)的表達(dá)式中,自變量$x$位于分母位置,且分子為常數(shù)$k$。表達(dá)式特點(diǎn)定義與表達(dá)式自變量$x$的取值范圍由于分母不能為0,因此自變量$x$的取值范圍是$xneq0$的所有實(shí)數(shù)。函數(shù)定義域反比例函數(shù)的定義域?yàn)?{x|xneq0}$。自變量取值范圍當(dāng)$k>0$時(shí)在第一象限和第三象限內(nèi),隨著$x$的增大,$y$值逐漸減小。函數(shù)圖象位于第一象限和第三象限。函數(shù)值變化規(guī)律當(dāng)$k<0$時(shí)在第二象限和第四象限內(nèi),隨著$x$的增大,$y$值逐漸增大。函數(shù)圖象位于第二象限和第四象限。無論$k$取何值,反比例函數(shù)在其定義域內(nèi)總是連續(xù)的,且在其定義域內(nèi)沒有極值點(diǎn)。01020304函數(shù)值變化規(guī)律反比例函數(shù)圖象繪制02

列表法繪制步驟確定自變量的取值范圍,并列出對應(yīng)的函數(shù)值表格。在坐標(biāo)系中描出各點(diǎn),并用平滑曲線連接。觀察圖象特點(diǎn),判斷反比例函數(shù)的增減性。在坐標(biāo)系中準(zhǔn)確描出各點(diǎn),注意點(diǎn)的位置和精度。用平滑曲線連接各點(diǎn),注意曲線的形狀和趨勢。選擇適當(dāng)?shù)淖宰兞咳≈?,?jì)算對應(yīng)的函數(shù)值。描點(diǎn)法繪制技巧反比例函數(shù)的圖象為雙曲線,兩支分別位于第一、三象限或第二、四象限。當(dāng)$k>0$時(shí),圖象在第一、三象限;當(dāng)$k<0$時(shí),圖象在第二、四象限。圖象關(guān)于原點(diǎn)對稱,且在每一象限內(nèi),從左到右,$y$隨$x$的增大而減小。圖象特點(diǎn)分析反比例函數(shù)性質(zhì)探究03對稱性反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱,即如果函數(shù)圖象上有點(diǎn)$(x,y)$,則必有對稱點(diǎn)$(-x,-y)$也在函數(shù)圖象上。對于任意一點(diǎn)$(x_1,y_1)$和其關(guān)于原點(diǎn)的對稱點(diǎn)$(-x_1,-y_1)$,它們到原點(diǎn)的距離相等,即$sqrt{x_1^2+y_1^2}=sqrt{(-x_1)^2+(-y_1)^2}$。0102增減性當(dāng)$k<0$時(shí),反比例函數(shù)圖象分布在第二、四象限,且隨著$x$的增大,$y$的值逐漸增大,即函數(shù)在第二、四象限內(nèi)單調(diào)遞增。當(dāng)$k>0$時(shí),反比例函數(shù)圖象分布在第一、三象限,且隨著$x$的增大,$y$的值逐漸減小,即函數(shù)在第一、三象限內(nèi)單調(diào)遞減。反比例函數(shù)的圖象永遠(yuǎn)不會(huì)與$x$軸和$y$軸相交。當(dāng)$x>0$時(shí),反比例函數(shù)的圖象位于$y$軸的右側(cè);當(dāng)$x<0$時(shí),反比例函數(shù)的圖象位于$y$軸的左側(cè)。當(dāng)$y>0$時(shí),反比例函數(shù)的圖象位于$x$軸的上方;當(dāng)$y<0$時(shí),反比例函數(shù)的圖象位于$x$軸的下方。與坐標(biāo)軸關(guān)系反比例函數(shù)應(yīng)用舉例0403平行四邊形面積問題通過給定平行四邊形的面積和一組對邊的長度,利用反比例關(guān)系求解另一組對邊的長度。01矩形面積問題通過給定矩形的面積和一邊的長度,利用反比例關(guān)系求解另一邊的長度。02三角形面積問題通過給定三角形的面積和底邊長度,利用反比例關(guān)系求解高。面積問題求解通過給定物體的速度和運(yùn)動(dòng)時(shí)間,利用反比例關(guān)系求解物體的位移。勻速直線運(yùn)動(dòng)問題變速直線運(yùn)動(dòng)問題曲線運(yùn)動(dòng)問題通過給定物體的加速度和運(yùn)動(dòng)時(shí)間,利用反比例關(guān)系求解物體的速度。通過給定物體的速度和運(yùn)動(dòng)路徑的曲率半徑,利用反比例關(guān)系求解物體的向心加速度。030201行程問題建模工作效率問題通過給定工作總量和工作時(shí)間,利用反比例關(guān)系求解工作效率。經(jīng)濟(jì)問題中的反比例關(guān)系例如,價(jià)格與需求量的反比例關(guān)系,可以通過給定價(jià)格和需求量中的一個(gè)量,求解另一個(gè)量。電阻、電壓、電流關(guān)系在電路中,電阻、電壓和電流之間存在反比例關(guān)系,可以通過給定其中兩個(gè)量求解第三個(gè)量。其他實(shí)際問題應(yīng)用拓展:反比例函數(shù)與一次函數(shù)關(guān)系05聯(lián)立反比例函數(shù)和一次函數(shù)的解析式,通過解方程組求得交點(diǎn)坐標(biāo)。在同一坐標(biāo)系中分別作出反比例函數(shù)和一次函數(shù)的圖象,找出兩圖象的交點(diǎn),從而確定交點(diǎn)坐標(biāo)。交點(diǎn)坐標(biāo)求解方法圖象法解析法通過平移、旋轉(zhuǎn)等變換,可以將反比例函數(shù)轉(zhuǎn)化為一次函數(shù),或?qū)⒁淮魏瘮?shù)轉(zhuǎn)化為反比例函數(shù)。在轉(zhuǎn)化過程中,需要注意保持函數(shù)的定義域、值域等性質(zhì)不變。相互轉(zhuǎn)化規(guī)律探討利用反比例函數(shù)和一次函數(shù)的交點(diǎn)坐標(biāo),可以求解一些實(shí)際問題,如經(jīng)濟(jì)學(xué)中的供需平衡問題、物理學(xué)中的速度時(shí)間問題等。在綜合應(yīng)用中,需要注意理解問題的背景和意義,正確建立數(shù)學(xué)模型,并靈活運(yùn)用反比例函數(shù)和一次函數(shù)的相關(guān)知識(shí)解決問題。綜合應(yīng)用實(shí)例分析總結(jié)回顧與課堂練習(xí)06010405060302反比例函數(shù)的定義:形如$y=frac{k}{x}$(其中$k$是常數(shù)且$kneq0$)的函數(shù)稱為反比例函數(shù)。反比例函數(shù)的圖象:反比例函數(shù)的圖象是兩條分別位于第一、三象限和第二、四象限的雙曲線,這兩條雙曲線關(guān)于原點(diǎn)對稱。反比例函數(shù)的性質(zhì)當(dāng)$k>0$時(shí),雙曲線位于第一、三象限,且在每個(gè)象限內(nèi),隨著$x$的增大,$y$值逐漸減小。當(dāng)$k<0$時(shí),雙曲線位于第二、四象限,且在每個(gè)象限內(nèi),隨著$x$的增大,$y$值逐漸增大。反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱,即如果點(diǎn)$(x,y)$在雙曲線上,那么點(diǎn)$(-x,-y)$也在雙曲線上。重點(diǎn)知識(shí)點(diǎn)總結(jié)忽略$kneq0$的條件在定義反比例函數(shù)時(shí),必須強(qiáng)調(diào)$kneq0$,否則函數(shù)無意義?;煜幢壤瘮?shù)與正比例函數(shù)正比例函數(shù)的形式為$y=kx$,而反比例函數(shù)的形式為$y=frac{k}{x}$,兩者在形式上容易混淆。忽略反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱的性質(zhì)在解題時(shí),應(yīng)注意利用反比例函數(shù)的這一性質(zhì)來簡化問題。易錯(cuò)難點(diǎn)剖析1.已知點(diǎn)$A(2,y_1)$和$B(3,y_2)$在反比例函數(shù)$y=frac{6}{x}$的圖象上,則$y_1$與$y_2$的大小關(guān)系是_______。【分析】本題考查反比例函數(shù)的性質(zhì)。根據(jù)反比例函數(shù)的性質(zhì),當(dāng)$k>0$時(shí),雙曲線位于第一、三象限,且在每個(gè)象限內(nèi),隨著$x$的增大,$y$值逐漸減小。因此,由于$2<3$,我們可以得出$y_1>y_2$。課堂練習(xí)題選講【解答】$y_1>y_2$2.下列各點(diǎn)中,在反比例函數(shù)$y=frac{2}{x}$的圖象上的是()A.$(1,-2)$B.$(-1,-2)$C.$(-1,2)$D.$(2,1)$課堂練習(xí)題選講【分析】本題考查反比例函數(shù)的定義。根據(jù)反比例函數(shù)的定義,如果點(diǎn)$(x,y)$在雙曲線上,那么它必須滿足$xy=k$的條件。因此,我們可以將各選項(xiàng)代入方程$xy=2$進(jìn)行檢驗(yàn)?!窘獯稹拷猓篈.$1times

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論