安徽省廬巢七校聯(lián)盟2024屆數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第1頁
安徽省廬巢七校聯(lián)盟2024屆數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第2頁
安徽省廬巢七校聯(lián)盟2024屆數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第3頁
安徽省廬巢七校聯(lián)盟2024屆數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第4頁
安徽省廬巢七校聯(lián)盟2024屆數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省廬巢七校聯(lián)盟2024屆數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)則()A.都大于2 B.至少有一個大于2C.至少有一個不小于2 D.至少有一個不大于22.已知三棱錐S-ABC中,底面ABC為邊長等于2的等邊三角形,SA垂直于底面ABC,SA=3,那么直線AB與平面SBC所成角的正弦值為A.34B.C.74D.3.函數(shù)在區(qū)間上的最大值為()A.2 B. C. D.4.用數(shù)學(xué)歸納法證明“當(dāng)為正奇數(shù)時(shí),能被整除”,第二步歸納假設(shè)應(yīng)該寫成()A.假設(shè)當(dāng)時(shí),能被整除B.假設(shè)當(dāng)時(shí),能被整除C.假設(shè)當(dāng)時(shí),能被整除D.假設(shè)當(dāng)時(shí),能被整除5.復(fù)數(shù)在平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知方程有4個不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.給出下列四個五個命題:①“”是“”的充要條件②對于命題,使得,則,均有;③命題“若,則方程有實(shí)數(shù)根”的逆否命題為:“若方程沒有實(shí)數(shù)根,則”;④函數(shù)只有個零點(diǎn);⑤使是冪函數(shù),且在上單調(diào)遞減.其中是真命題的個數(shù)為:A. B. C. D.8.設(shè),是雙曲線的左、右兩個焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.9.若隨機(jī)變量,其均值是80,標(biāo)準(zhǔn)差是4,則和的值分別是()A.100,0.2 B.200,0.4 C.100,0.8 D.200,0.610.設(shè)隨機(jī)變量服從正態(tài)分布,若,則實(shí)數(shù)等于()A. B. C. D.11.函數(shù)是()A.偶函數(shù)且最小正周期為2 B.奇函數(shù)且最小正周期為2C.偶函數(shù)且最小正周期為 D.奇函數(shù)且最小正周期為12.已知函數(shù),當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體的棱長為1,E為線段上的一點(diǎn),則三棱錐的體積為_____.14.已知函數(shù)是的導(dǎo)函數(shù),若,則的______.(其中為自然對數(shù)的底數(shù))15.已知集合,集合,則_______.16.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過點(diǎn)的直線交拋物線于,兩點(diǎn),過點(diǎn)作準(zhǔn)線的垂線,垂足為,當(dāng)點(diǎn)坐標(biāo)為時(shí),為正三角形,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(1)求在區(qū)間上的極小值和極大值;(2)求在(為自然對數(shù)的底數(shù))上的最大值.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.(1)求圓C的直角坐標(biāo)方程;(2)若直線過點(diǎn),圓C與直線交于點(diǎn),求的值.19.(12分)已知復(fù)數(shù).(I)若,求復(fù)數(shù);(II)若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第一象限,求的取值范圍.20.(12分)已知命題:方程有實(shí)數(shù)解,命題:,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若為假命題,且為真命題,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù)的最小值為M.(1)求M;(2)若正實(shí)數(shù),,滿足,求:的最小值.22.(10分)某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.廣告投入/萬元12345銷售收益/萬元23257(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;(Ⅲ)若廣告投入萬元時(shí),實(shí)際銷售收益為萬元,求殘差.附:,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】

由基本不等式,a,b都是正數(shù)可解得.【題目詳解】由題a,b,c都是正數(shù),根據(jù)基本不等式可得,若,,都小于2,則與不等式矛盾,因此,至少有一個不小于2;當(dāng),,都等于2時(shí),選項(xiàng)A,B錯誤,都等于3時(shí),選項(xiàng)D錯誤.選C.【題目點(diǎn)撥】本題考查了基本不等式,此類題干中有多個互為倒數(shù)的項(xiàng),一般都可以先用不等式求式子范圍,再根據(jù)題目要求解題.2、D【解題分析】略視頻3、D【解題分析】

求出導(dǎo)函數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,從而可確定最大值.【題目詳解】,當(dāng)時(shí),;時(shí),,∴已知函數(shù)在上是增函數(shù),在上是減函數(shù),.故選D.【題目點(diǎn)撥】本題考查用導(dǎo)數(shù)求函數(shù)的最值.解題時(shí)先求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減,從而確定最值,在閉區(qū)間的最值有時(shí)可能在區(qū)間的端點(diǎn)處取得,要注意比較.4、D【解題分析】注意n為正奇數(shù),觀察第一步取到1,即可推出第二步的假設(shè).解:根據(jù)數(shù)學(xué)歸納法的證明步驟,注意n為奇數(shù),所以第二步歸納假設(shè)應(yīng)寫成:假設(shè)n=2k-1(k∈N*)正確,再推n=2k+1正確;故選D.本題是基礎(chǔ)題,不僅注意第二步的假設(shè),還要使n=2k-1能取到1,是解好本題的關(guān)鍵.5、B【解題分析】分析:先化簡復(fù)數(shù)z,再判斷其在平面內(nèi)對應(yīng)的點(diǎn)在第幾象限.詳解:由題得,所以復(fù)數(shù)z在平面內(nèi)對應(yīng)的點(diǎn)為,所以在平面內(nèi)對應(yīng)的點(diǎn)在第二象限.故答案為B.點(diǎn)睛:(1)本題主要考查復(fù)數(shù)的計(jì)算和復(fù)數(shù)的幾何意義,意在考查學(xué)生對這些知識的掌握水平.(2)復(fù)數(shù)對應(yīng)的點(diǎn)是(a,b),點(diǎn)(a,b)所在的象限就是復(fù)數(shù)對應(yīng)的點(diǎn)所在的象限.復(fù)數(shù)和點(diǎn)(a,b)是一一對應(yīng)的關(guān)系.6、A【解題分析】分析:由于是偶函數(shù),因此只要在時(shí),方程有2個根即可.用分離參數(shù)法轉(zhuǎn)化為求函數(shù)的極值.詳解:由于是偶函數(shù),所以方程有兩個根,即有兩個根.設(shè),則,∴時(shí),,遞增,時(shí),,遞減,時(shí),取得極大值也是最大值,又時(shí),,時(shí),,所以要使有兩個根,則.故選A.點(diǎn)睛:本題考查方程根的分布與函數(shù)的零點(diǎn)問題,方程根的個數(shù)問題常常轉(zhuǎn)化為函數(shù)圖象交點(diǎn)個數(shù),如能采用分離參數(shù)法,則問題轉(zhuǎn)化為求函數(shù)的單調(diào)性與極值或值域.7、C【解題分析】分析:由充分必要條件的判定方法判斷①,寫出特稱命題的否定判斷②,根據(jù)逆否命題與原命題的等價(jià)性,只需要判斷原命題的真假即可判斷③正確,求出方程的根即可判斷④正確,求出時(shí)是冪函數(shù),且在上單調(diào)遞減,故⑤正確詳解:對于①,由得到,由可得是的必要不充分條件,“”是“”的必要不充分條件,故①是假命題對于②,對于命題,使得,則,均有;根據(jù)含量詞的命題的否定形式,將與互換,且結(jié)論否定,故正確對于③,命題“若,則方程有實(shí)數(shù)根”的逆否命題為:“若方程沒有實(shí)數(shù)根,則”,滿足逆否命題的形式,故正確對于④函數(shù),令可以求得,函數(shù)只有個零點(diǎn),故正確對于⑤,令,解得,此時(shí)是冪函數(shù),且在上單調(diào)遞減,故正確綜上所述,真命題的個數(shù)是故選點(diǎn)睛:本題主要考查的是命題的真假判斷,根據(jù)各知識點(diǎn)即可進(jìn)行判斷,本題較為基礎(chǔ)。8、D【解題分析】

取的中點(diǎn),利用,可得,從而可得,利用雙曲線的定義及勾股定理,可得結(jié)論.【題目詳解】取的中點(diǎn),則,,.,是的中點(diǎn),,,,,,,.故選:D.【題目點(diǎn)撥】本題考查了雙曲線的離心率,確定是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力。9、C【解題分析】

根據(jù)隨機(jī)變量符合二項(xiàng)分布,根據(jù)二項(xiàng)分布的期望和方差的公式和條件中所給的期望和方差的值,得到關(guān)于和的方程組,解方程組得到要求的兩個未知量.【題目詳解】∵隨機(jī)變量,其均值是80,標(biāo)準(zhǔn)差是4,∴由,∴.故選:C.【題目點(diǎn)撥】本題主要考查分布列和期望的簡單應(yīng)用,通過解方程組得到要求的變量,這與求變量的期望是一個相反的過程,但是兩者都要用到期望和方差的公式.10、B【解題分析】分析:根據(jù)隨機(jī)變量符合正態(tài)分布,又知正態(tài)曲線關(guān)于x=4對稱,得到兩個概率相等的區(qū)間關(guān)于x=4對稱,得到關(guān)于a的方程,解方程即可.詳解:∵隨機(jī)變量ξ服從正態(tài)分布N(4,3),∵P(ξ<a﹣5)=P(ξ>a+1),∴x=a﹣5與x=a+1關(guān)于x=4對稱,∴a﹣5+a+1=8,∴2a=12,∴a=6,故選:C.點(diǎn)睛:關(guān)于正態(tài)曲線在某個區(qū)間內(nèi)取值的概率求法①熟記P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正態(tài)曲線的對稱性和曲線與x軸之間面積為1.11、C【解題分析】

首先化簡為,再求函數(shù)的性質(zhì).【題目詳解】,是偶函數(shù),故選C.【題目點(diǎn)撥】本題考查了三角函數(shù)的基本性質(zhì),屬于簡單題型.12、A【解題分析】

令,由可知在上單調(diào)遞增,從而可得在上恒成立;通過分離變量可得,令,利用導(dǎo)數(shù)可求得,從而可得,解不等式求得結(jié)果.【題目詳解】由且得:令,可知在上單調(diào)遞增在上恒成立,即:令,則時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增,解得:本題正確選項(xiàng):【題目點(diǎn)撥】本題考查根據(jù)函數(shù)的單調(diào)性求解參數(shù)范圍的問題,關(guān)鍵是能夠?qū)⒁阎P(guān)系式變形為符合單調(diào)性的形式,從而通過構(gòu)造函數(shù)將問題轉(zhuǎn)化為導(dǎo)數(shù)大于等于零恒成立的問題;解決恒成立問題常用的方法為分離變量,將問題轉(zhuǎn)化為參數(shù)與函數(shù)最值之間的大小關(guān)系比較的問題,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】以△為底面,則易知三棱錐的高為1,故14、【解題分析】

構(gòu)造函數(shù)根據(jù)函數(shù)單調(diào)性解不等式得到答案.【題目詳解】構(gòu)造函數(shù)單調(diào)遞增.故答案為【題目點(diǎn)撥】本題考查了函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性解不等式,構(gòu)造函數(shù)是解題的關(guān)鍵.15、{3,4}.【解題分析】

利用交集的概念及運(yùn)算可得結(jié)果.【題目詳解】,.【題目點(diǎn)撥】本題考查集合的運(yùn)算,考查交集的概念與運(yùn)算,屬于基礎(chǔ)題.16、2【解題分析】

設(shè)點(diǎn)在第一象限,根據(jù)題意可得直線的傾斜角為,過點(diǎn)作軸,垂足為,由拋物線的定義可得,,通過解直角三角形可得答案.【題目詳解】設(shè)點(diǎn)在第一象限,過點(diǎn)作軸,垂足為,由為正三角形,可得直線的傾斜角為.由拋物線的定義可得,又,所以在中有:.即,解得:.故答案為:2【題目點(diǎn)撥】本題考查拋物線中過焦點(diǎn)的弦的性質(zhì),屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,極大值為.(2)答案不唯一,具體見解析【解題分析】

(1)對三次函數(shù)進(jìn)行求導(dǎo),解導(dǎo)數(shù)不等式,畫出表格,從而得到極值;(2)由(1)知函數(shù)的性質(zhì),再對進(jìn)行分類討論,求在的性質(zhì),比較兩段的最大值,進(jìn)而得到函數(shù)的最大值.【題目詳解】(1)當(dāng)時(shí),,令,解得或.當(dāng)x變化時(shí),,的變化情況如下表:x0-0+0-遞減極小值遞增極大值遞減故當(dāng)時(shí),函數(shù)取得極小值為,當(dāng)時(shí),函數(shù)取值極大值為.(2)①當(dāng)時(shí),由(1)知,函數(shù)在和上單調(diào)遞減,在上單調(diào)遞增.因?yàn)?,,,所以在上的值大值?.②當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞增,則在上的最大值為.故當(dāng)時(shí),在上最大值為;當(dāng)時(shí),在上的最大值為2.【題目點(diǎn)撥】本題三次函數(shù)、對數(shù)函數(shù)為背景,考查利用導(dǎo)數(shù)求三次函數(shù)的極值,考查分類討論思想的應(yīng)用.18、(1);(2).【解題分析】

試題分析:(1)直接利用轉(zhuǎn)換關(guān)系把圓的極坐標(biāo)方程轉(zhuǎn)換為直角坐標(biāo)方程.(2)將直線的參數(shù)方程和圓聯(lián)立,整理成一元二次方程,進(jìn)一步利用根和系數(shù)的關(guān)系求出結(jié)果.解析:(1)(2)證明:把得證.19、(1);(2).【解題分析】試題分析:(1)由題意計(jì)算可得,若,則,.(2)結(jié)合(1)的計(jì)算結(jié)果得到關(guān)于實(shí)數(shù)a的不等式,求解不等式可得的取值范圍為.試題解析:(1),若,則,∴,∴.(2)若在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第一象限,則且,解得,即的取值范圍為.20、(1)或;(2)【解題分析】

(1)由方程有實(shí)數(shù)根則,可求出實(shí)數(shù)的取值范圍.

(2)為真命題,即從而得出的取值范圍,由(1)可得出為假命題時(shí)實(shí)數(shù)的取值范圍.即可得出答案.【題目詳解】解:(1)方程有實(shí)數(shù)解得,,解之得或;(2)為假命題,則,為真命題時(shí),,,則故.故為假命題且為真命題時(shí),.【題目點(diǎn)撥】本題考查命題為真時(shí)求參數(shù)的范圍和兩個命題同時(shí)滿足條件時(shí),求參數(shù)的范圍,屬于基礎(chǔ)題.21、(1)(2)3.【解題分析】

將絕對值函數(shù)寫成分段函數(shù)形式,分別求出各段的最小值,最小的即為函數(shù)的最小值。由(1)知,直接利用公式:平方平均數(shù)算數(shù)平均數(shù),即可解出最小值?!绢}目詳解】(1)如圖所示∴(2)由(1)知∴∴∴∴當(dāng)且僅當(dāng),是值最小∴的最小值為3.【題目點(diǎn)撥】本題考查絕對值函數(shù)及平方平均數(shù)與算數(shù)平均數(shù)的大小關(guān)系,屬于基礎(chǔ)題.22、(1).(2).(3).【解題分析】分析:(Ⅰ)設(shè)各小長方形的寬度為,由頻率直方圖各小長方形的面積總和為,可得,從而可得結(jié)果;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論