福建省莆田市八中2024屆數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
福建省莆田市八中2024屆數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
福建省莆田市八中2024屆數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
福建省莆田市八中2024屆數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
福建省莆田市八中2024屆數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省莆田市八中2024屆數(shù)學高二第二學期期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)滿足(為虛數(shù)單位),則().A.1 B.2 C.3 D.2.的展開式存在常數(shù)項,則正整數(shù)的最小值為()A.5 B.6 C.7 D.143.在底面為正方形的四棱錐中,平面,,則異面直線與所成的角是()A. B. C. D.4.在10個籃球中有6個正品,4個次品.從中抽取4個,則正品數(shù)比次品數(shù)少的概率為A. B. C. D.5.長方體中,是對角線上一點,是底面上一點,若,,則的最小值為()A. B. C. D.6.已知,,,則實數(shù)的大小關(guān)系是()A. B. C. D.7.在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是()A. B. C. D.(2,4]8.“所有9的倍數(shù)都是3的倍數(shù).某數(shù)是9的倍數(shù),故該數(shù)為3的倍數(shù),”上述推理A.完全正確 B.推理形式不正確C.錯誤,因為大小前提不一致 D.錯誤,因為大前提錯誤9.已知函數(shù),,若,,使得,則實數(shù)a的取值范圍是()A. B. C. D.10.拋物線上的點到直線的最短距離為()A. B. C. D.11.設(shè)隨機變量的分布列為,則()A.3 B.4 C.5 D.612.兩個線性相關(guān)變量x與y的統(tǒng)計數(shù)據(jù)如表:x99.51010.511y1110865其回歸直線方程是,則相對應(yīng)于點(11,5)的殘差為()A.0.1 B.0.2 C.﹣0.1 D.﹣0.2二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的離心率為,三角形的三個頂點都在橢圓上,設(shè)它的三條邊、、的中點分別為、、,且三條邊所在直線的斜率分別、、,且、、均不為.為坐標原點,若直線、、的斜率之和為,則______.14.某高中有高一學生320人,高二學生400人,高三學生360人.現(xiàn)采用分層抽樣調(diào)查學生的視力情況.已知從高一學生中抽取了8人,則三個年級一共抽取了__________人。15.有三張卡片,分別寫有1和2,1和3,2和3.甲、乙、丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”則乙的卡片上的數(shù)字是______.16.設(shè)集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知與之間的數(shù)據(jù)如下表:(1)求關(guān)于的線性回歸方程;(2)完成下面的殘差表:并判斷(1)中線性回歸方程的回歸效果是否良好(若,則認為回歸效果良好).附:,,,.18.(12分)某校在一次趣味運動會的頒獎儀式上,高一、高二、高三各代表隊人數(shù)分別為160人、120人、人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人到前排就坐,其中高二代表隊有6人.(1)求的值;(2)把到前排就坐的高二代表隊6人分別記為,,,,,,現(xiàn)隨機從中抽取2人上臺抽獎.求或沒有上臺抽獎的概率.(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個之間的均勻隨機數(shù),,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.19.(12分)在平面直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知直線的參數(shù)方程為(為參數(shù)),曲線C的極坐標方程為.(1)求曲線的直角坐標方程和直線的普通方程;(2)設(shè)直線與曲線交于兩點,點,求的值.20.(12分)已知函數(shù)是奇函數(shù)().(1)求實數(shù)的值;(2)試判斷函數(shù)在上的單調(diào)性,并證明你的結(jié)論;(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.21.(12分)已知集合=,集合=.(1)若,求;(2)若AB,求實數(shù)的取值范圍.22.(10分)用函數(shù)單調(diào)性的定義證明:函數(shù)在是減函數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

根據(jù)復數(shù)的基本運算法則進行化簡,然后求模即可.【題目詳解】解:,,故選:D.【題目點撥】本題主要考查復數(shù)模長的計算,屬于基礎(chǔ)題.2、C【解題分析】

化簡二項式展開式的通項公式,令的指數(shù)為零,根據(jù)為正整數(shù),求得的最小值.【題目詳解】,令,則,當時,有最小值為7.故選C.【題目點撥】本小題主要考查二項式展開式的通項公式,考查與正整數(shù)有關(guān)問題,屬于基礎(chǔ)題.3、B【解題分析】

底面ABCD為正方形,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,因為PB∥CM,所以就是異面直線PB與AC所成的角.【題目詳解】解:由題意:底面ABCD為正方形,PA⊥平面ABCD,分別過P,D點作AD,AP的平行線交于M,連接CM,AM,

.

∴PBCM是平行四邊形,

∴PB∥CM,

所以∠ACM就是異面直線PB與AC所成的角.

設(shè)PA=AB=,在三角形ACM中,

∴三角形ACM是等邊三角形.

所以∠ACM等于60°,即異面直線PB與AC所成的角為60°.

故選:B.【題目點撥】本題考查了兩條異面直線所成的角的證明及求法.屬于基礎(chǔ)題.4、A【解題分析】

正品數(shù)比次品數(shù)少,包括一正三次和全部是次品兩種情況,根據(jù)情況寫出所有的組合數(shù)計算即可.【題目詳解】正品數(shù)比次品數(shù)少,包括一正三次和全部是次品這兩種情況為,總數(shù)為,所以概率為.選A.【題目點撥】本題考查概率問題,解題的關(guān)鍵是正確的求出所有可能的結(jié)果,屬于基礎(chǔ)題.5、A【解題分析】

將繞邊旋轉(zhuǎn)到的位置,使得平面和平面在同一平面內(nèi),則到平面的距離即為的最小值,利用勾股定理解出即可.【題目詳解】將繞邊旋轉(zhuǎn)到的位置,使得平面和平面在同一平面內(nèi),過點作平面,交于點,垂足為點,則為的最小值.,,,,,,,,故選A.【題目點撥】本題考查空間距離的計算,將兩折線段長度和的計算轉(zhuǎn)化為同一平面上是解決最小值問題的一般思路,考查空間想象能力,屬于中等題.6、A【解題分析】

容易得出30.6>1,0<0.63<1,log0.63<0,從而可得出a,b,c的大小關(guān)系.【題目詳解】∵30.6>30=1,0<0.63<0.60=1,log0.63<log0.61=0;∴a>b>c.故選:A.【題目點撥】本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,熟記單調(diào)性是關(guān)鍵,是基礎(chǔ)題7、A【解題分析】

由,取的中點E,翻折前,連接,則,,翻折后,在圖2中,此時,及,進而得到,由此可求解得取值范圍,得到答案.【題目詳解】由題意得,取的中點E,翻折前,在圖1中,連接,則,翻折后,在圖2中,此時,因為,所以平面,所以,又為的中點,所以,所以,在中,可得①;②;③,由①②③,可得.如圖3,翻折后,當與在一個平面上,與交于,且,又,所以,所以,此時,綜上可得的取值范圍是,故選A.【題目點撥】本題主要考查了平面圖形的翻折問題,以及空間幾何體的結(jié)構(gòu)特征的應(yīng)用,其中解答中認真審題,合理利用折疊前后圖形的線面位置關(guān)系是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.8、A【解題分析】

根據(jù)三段論定義即可得到答案.【題目詳解】根據(jù)題意,符合邏輯推理三段論,于是完全正確,故選A.【題目點撥】本題主要考查邏輯推理,難度不大.9、A【解題分析】

由題意可轉(zhuǎn)化為,利用導數(shù)分別研究兩個函數(shù)最小值,求解即可.【題目詳解】解:當時,由得,=,當時,在單調(diào)遞減,是函數(shù)的最小值,當時,為增函數(shù),是函數(shù)的最小值,又因為,都,使得,可得在的最小值不小于在的最小值,即,解得:,故選:.【題目點撥】本題考查指數(shù)函數(shù)和對勾函數(shù)的圖像及性質(zhì),考查利用導數(shù)研究單調(diào)性問題的應(yīng)用,屬于基礎(chǔ)題.10、B【解題分析】分析:設(shè)拋物線上點,由點到直線距離公式,得點A到直線的距離,由二次函數(shù)的性質(zhì),可求最小距離.詳解:設(shè)拋物線上的任意一點,由拋物線的性質(zhì)點A到直線的距離易得由二次函數(shù)的性質(zhì)可知,當時,最小距離.故選B.點睛:本題考查拋物線的基本性質(zhì),點到直線距離公式,考查學生轉(zhuǎn)化能力和計算能力.11、C【解題分析】分析:根據(jù)方差的定義計算即可.詳解:隨機變量的分布列為,則則、故選D點睛:本題考查隨機變量的數(shù)學期望和方差的求法,是中檔題,解題時要認真審題,注意方差計算公式的合理運用.12、B【解題分析】

求出樣本中心,代入回歸直線的方程,求得,得出回歸直線的方程,令,解得,進而求解相應(yīng)點的殘差,得到答案.【題目詳解】由題意,根據(jù)表中的數(shù)據(jù),可得,把樣本中心代入回歸方程,即,解得,即回歸直線的方程為,令,解得,所以相應(yīng)點的殘差為,故選B.【題目點撥】本題主要考查了回歸直線方程的求解及應(yīng)用,其中解答中正確求解回歸直線的方程,利用回歸直線的方程得出預(yù)測值是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

求出橢圓方程,設(shè)出的坐標,利用橢圓中的結(jié)論:,,,結(jié)合直線的斜率之和為進行運算.【題目詳解】因為橢圓的離心率為,所以,又,,,所以,,,所以.故答案為:-2【題目點撥】解析幾何小題若能靈活利用一些二級結(jié)論,能使問題的求解更簡便,計算量更小,本題等三個結(jié)論均可利用設(shè)而不求點差法證出.14、27【解題分析】分析:根據(jù)分層抽樣的概念得按比例抽樣:.詳解:因為分層抽樣,所以三個年級一共抽取.點睛:在分層抽樣的過程中,為了保證每個個體被抽到的可能性是相同的,這就要求各層所抽取的個體數(shù)與該層所包含的個體數(shù)之比等于樣本容量與總體的個體數(shù)之比,即ni∶Ni=n∶N.15、1和2【解題分析】

由題意分析可知甲的卡片上的數(shù)字為1和2,乙的卡片上的數(shù)字為1和2,丙的卡片上的數(shù)字為1和1.【題目詳解】由題意可知丙不拿1和2.

若丙拿1和1,則乙拿1和2,甲拿1和2,滿足題意;

若丙拿1和2,則乙拿1和2,甲拿1和1,不滿足題意.

故乙的卡片上的數(shù)字是1和2.故答案為:1和2【題目點撥】本題主要考查推理,考查學生邏輯思維能力,屬于基礎(chǔ)題.16、{2,4,6,8}【解題分析】分析:詳解:因為,,表示A集合和B集合“加”起來的元素,重復的元素只寫一個,所以點睛:在求集合并集時要注意集合的互異性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)良好.【解題分析】

(1)由題意求出,,代入公式求值,從而得到回歸直線方程;(2)根據(jù)公式計算并填寫殘差表;由公式計算相關(guān)指數(shù),結(jié)合題意得出統(tǒng)計結(jié)論.【題目詳解】(1)由已知圖表可得,,,,則,,故.(2)∵,∴,,,,,則殘差表如下表所示,∵,∴,∴該線性回歸方程的回歸效果良好.【題目點撥】本題考查了線性回歸直線方程與相關(guān)系數(shù)的應(yīng)用問題,是中檔題.18、(1)160;(2);(3)【解題分析】本題考查概率與統(tǒng)計知識,考查分層抽樣,考查概率的計算,確定概率的類型是關(guān)鍵.(1)根據(jù)分層抽樣可得故可求n的值;(2)求出高二代表隊6人,從中抽取2人上臺抽獎的基本事件,確定a和b至少有一人上臺抽獎的基本事件,根據(jù)古典概型的概率公式,可得a和b至少有一人上臺抽獎的概率(3)確定滿足0≤x≤1,0≤y≤1點的區(qū)域,由條件得到的區(qū)域為圖中的陰影部分,計算面積,可求該代表中獎的概率.解:(Ⅰ)由題意得,解得.…………4分(Ⅱ)從高二代表隊6人中隨機抽取2人的所有基本事件如下:(a,b)、(a,c)、(a,d)、(a,e)(a,f)、(b,c)(b,d)(b,e)、(b,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)共15種………6分設(shè)“高二代表隊中a和b至少有一人上臺抽獎”為事件,其中事件的基本事件有9種.則.…………9分(Ⅲ)由已知,可得,點在如圖所示的正方形OABC內(nèi),由條件,得到區(qū)域為圖中的陰影部分.由,令得,令得.∴設(shè)“該運動員獲得獎品”為事件則該運動員獲得獎品的概率……………14分19、(1);(2).【解題分析】

(1)由代入曲線C的極坐標方程,即可求出普通方程,消去直線l的參數(shù)方程中的未知量t,即可得到直線的普通方程;(2)因為直線和曲線C有兩個交點,所以根據(jù)直線的參數(shù)方程,建立一元二次方程根與系數(shù),得出結(jié)果.【題目詳解】(1)由得曲線的直角坐標方程為,直線的普通方程為.(2)直線的參數(shù)方程的標準形式為代入,整理得:,設(shè)所對應(yīng)的參數(shù)為,則,所以.【題目點撥】本題考查參數(shù)方程和極坐標方程化為普通方程,直線與曲線有兩個交點時的距離問題,是??碱}型.20、(1)(2)單調(diào)遞增,見解析(3)【解題分析】

(1)根據(jù)函數(shù)是定義在上的奇函數(shù),由求得的值.(2)由(1)求得的解析式,利用單調(diào)性的定義,任取,計算,由此證得在上遞增.(3)根據(jù)的單調(diào)性和奇偶性化簡不等式,得到對任意恒成立,利用一元二次不等式恒成立則其判別式為負數(shù)列不等式,解不等式求得的取值范圍.【題目詳解】(1)∵是奇函數(shù)在原點有定義:∴,∴;經(jīng)驗證滿足題意(2)在上單調(diào)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論