2024屆江蘇省南京市數(shù)學高二第二學期期末檢測模擬試題含解析_第1頁
2024屆江蘇省南京市數(shù)學高二第二學期期末檢測模擬試題含解析_第2頁
2024屆江蘇省南京市數(shù)學高二第二學期期末檢測模擬試題含解析_第3頁
2024屆江蘇省南京市數(shù)學高二第二學期期末檢測模擬試題含解析_第4頁
2024屆江蘇省南京市數(shù)學高二第二學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省南京市數(shù)學高二第二學期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列有關命題的說法正確的是()A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分條件C.命題“若x=y(tǒng),則sinx=siny”的逆否命題為真命題D.命題“?x0∈R使得”的否定是“?x∈R,均有x2+x+1<0”2.《數(shù)學統(tǒng)綜》有如下記載:“有凹錢,取三數(shù),小小大,存三角”.意思是說“在凹(或凸)函數(shù)(函數(shù)值為正)圖象上取三個點,如果在這三點的縱坐標中兩個較小數(shù)之和最大的數(shù),則存在將這三點的縱坐標值作為三邊長的三角形”.現(xiàn)已知凹函數(shù),在上取三個不同的點,均存在為三邊長的三角形,則實數(shù)的取值范圍為()A. B. C. D.3.設函數(shù),若實數(shù)分別是的零點,則()A. B. C. D.4.點P的直角坐標為(-3,3),則點A.(23,C.(-23,5.“a>0”是“|a|>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.觀察下列各式:則()A.28B.76C.123D.1997.某學校有2200名學生,現(xiàn)采用系統(tǒng)抽樣方法抽取44人,將2200人按1,2,…,2200隨機編號,則抽取的44人中,編號落在[101,500]的人數(shù)為()A.7 B.8 C.9 D.108.等差數(shù)列中,,為等差數(shù)列的前n項和,則()A.9 B.18 C.27 D.549.二項式的展開式中項的系數(shù)為,則()A.4 B.5 C.6 D.710.函數(shù)(為自然對數(shù)的底數(shù))的遞增區(qū)間為()A. B. C. D.11.復數(shù)在復平面內對應的點在()A.實軸上 B.虛軸上 C.第一象限 D.第二象限12.已知函數(shù),為的導函數(shù),則的值為()A.0 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中的系數(shù)為,則________.14.若復數(shù)()為純虛數(shù),則____.15.是虛數(shù)單位,若復數(shù)是純虛數(shù),則實數(shù)____________.16.將圓心角為,面積為的扇形作為圓錐的側面,則圓錐的體積等于_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求曲線在點處的切線方程;(2)求的單調區(qū)間;(3)若在區(qū)間上恒成立,求實數(shù)a的取值范圍.18.(12分)某企業(yè)有甲、乙兩套設備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設備的生產(chǎn)質量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各隨機抽取了100件產(chǎn)品作為樣本來檢測一項質量指標值,若產(chǎn)品的該項質量指標值落在內,則為合格品,否則為不合格品.表1是甲套設備的樣本的頻數(shù)分布表,圖是乙套設備的樣本的頻率分布直方圖.表甲套設備的樣本的頻數(shù)分布表質量指標值頻數(shù)2103638122(1)將頻率視為概率.若乙套設備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?(2)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質量指標值與甲、乙兩套設備的選擇有關.甲套設備乙套設備合計合格品不合格品合計附表及公式:,其中;0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)如圖,在空間幾何體中,四邊形是邊長為2的正方形,,,.(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.20.(12分)如圖,在四棱錐中,底面為菱形,,,為線段的中點,為線段上的一點.(1)證明:平面平面.(2)若,二面角的余弦值為,求與平面所成角的正弦值.21.(12分)已知橢圓的離心率為,,分別為橢圓的左、右焦點,點在橢圓上.(1)求的方程;(2)若直線與橢圓相交于,兩點,試問:在軸上是否在點,當變化時,總有?若存在求出點的坐標,若不存在,請說明理由.22.(10分)已知命題關于的方程的解集至多有兩個子集,命題,,若是的必要不充分條件,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”,A不正確;由x2-5x-6=0,解得x=-1或6,因此“x=-1”是“x2-5x-6=0”的充分不必要條件,B不正確;命題“若x=y(tǒng),則sinx=siny”為真命題,其逆否命題為真命題,C正確;命題“?x0∈R使得+x0+1<0”的否定是“?x∈R,均有x2+x+1≥0”,D不正確.綜上可得只有C正確.2、A【解題分析】

由題意,三點的縱坐標中兩個較小數(shù)之和小于等于2,可得m2﹣m+2≤2,即可得出結論.【題目詳解】易知,所以,在上的最小值為.由題意可知,當,∴或,,故選A.【題目點撥】本題考查新定義,考查學生轉化問題的能力,正確轉化是關鍵.3、A【解題分析】由題意得,函數(shù)在各自的定義域上分別為增函數(shù),∵,又實數(shù)分別是的零點∴,∴,故.選A.點睛:解答本題時,先根據(jù)所給的函數(shù)的解析式判斷單調性,然后利用判斷零點所在的范圍,然后根據(jù)函數(shù)的單調性求得的取值范圍,其中借助0將與聯(lián)系在一起是關鍵.4、D【解題分析】

先判斷點P的位置,然后根據(jù)公式:ρ2ρ,根據(jù)點P的位置,求出θ.【題目詳解】因為點P的直角坐標為(-3,3),所以點Pρ=(-3)2+所以θ=2kπ+56【題目點撥】本題考查了點的直角坐標化為極坐標,關鍵是要知道點的具體位置.5、A【解題分析】試題分析:本題主要是命題關系的理解,結合|a|>0就是{a|a≠0},利用充要條件的概念與集合的關系即可判斷.解:∵a>0?|a|>0,|a|>0?a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要條件故選A考點:必要條件.6、C【解題分析】試題分析:觀察可得各式的值構成數(shù)列1,3,4,7,11,…,其規(guī)律為從第三項起,每項等于其前相鄰兩項的和,所求值為數(shù)列中的第十項.繼續(xù)寫出此數(shù)列為1,3,4,7,11,18,29,47,76,123,…,第十項為123,即考點:歸納推理7、B【解題分析】

先求出每一個小組的人數(shù),再求編號落在[101,500]的人數(shù).【題目詳解】每一個小組的人數(shù)為220044所以編號落在[101,500]的人數(shù)為500-10050故選:B【題目點撥】本題主要考查系統(tǒng)抽樣,意在考查學生對該知識的理解掌握水平,屬于基礎題.8、A【解題分析】

由已知結合等差數(shù)列的性質求得a5,再由考查等差數(shù)列的前n項和公式求S2.【題目詳解】在等差數(shù)列{an}中,由a2+a5+a8=3,得3a5=3,即a5=2.∴S2.故選:A.【題目點撥】本題考查等差數(shù)列的性質,考查等差數(shù)列的前n項和,是基礎題.9、C【解題分析】二項式的展開式的通項是,令得的系數(shù)是,因為的系數(shù)為,所以,即,解得:或,因為,所以,故選C.【考點定位】二項式定理.10、D【解題分析】,由于恒成立,所以當時,,則增區(qū)間為.,故選擇D.11、B【解題分析】

利用復數(shù)的乘法法則將復數(shù)表示為一般形式,即可得出復數(shù)在復平面內對應的點的位置.【題目詳解】,對應的點的坐標為,所對應的點在虛軸上,故選B.【題目點撥】本題考查復數(shù)對應的點,考查復數(shù)的乘法法則,關于復數(shù)問題,一般要利用復數(shù)的四則運算法則將復數(shù)表示為一般形式進行解答,考查計算能力,屬于基礎題.12、D【解題分析】

根據(jù)題意,由導數(shù)的計算公式求出函數(shù)的導數(shù),將代入導數(shù)的解析式,計算可得答案.【題目詳解】解:根據(jù)題意,,則,則;故選:.【題目點撥】本題考查導數(shù)的計算,關鍵是掌握導數(shù)的計算公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】分析:先根據(jù)二項展開式的通項求得的系數(shù),進而得到的值,然后再根據(jù)微積分基本定理求解即可.詳解:二項式的展開式的通項為,令,可得的系數(shù)為,由題意得,解得.∴.點睛:解答有關二項式問題的關鍵是正確得到展開式的通項,然后根據(jù)題目要求求解.定積分計算的關鍵是確定被積函數(shù)的原函數(shù),然后根據(jù)微積分基本定理求解.14、0【解題分析】試題分析:由題意得,復數(shù)為純虛數(shù),則,解得或,當時,(舍去),所以.考點:復數(shù)的概念.15、2【解題分析】

化簡復數(shù),實部為0,計算得到答案.【題目詳解】為純虛數(shù)故答案為2【題目點撥】本題考查了復數(shù)的計算,屬于簡單題.16、【解題分析】設圓錐的母線為,底面半徑為,,又圓錐的高是圓錐的表面積是,圓錐的體積是,故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)切線方程為.(2)當時,的單調增區(qū)間是和,單調減區(qū)間是;當時,的單調增區(qū)間是;當時,的單調增區(qū)間是和,單調減區(qū)間是.(1).【解題分析】試題分析:(1)求出a=1時的導數(shù)即此時切線的斜率,然后由點斜式求出切線方程即可;(2)對于含參數(shù)的單調性問題的關鍵時如何分類討論,常以導數(shù)等于零時的根與區(qū)間端點的位置關系作為分類的標準,然后分別求每一種情況時的單調性;(1)恒成立問題常轉化為最值計算問題,結合本題實際并由第二問可知,函數(shù)在區(qū)間[1,e]上只可能有極小值點,所以只需令區(qū)間端點對應的函數(shù)值小于等于零求解即可.試題解析:(1)∵a=1,∴f(x)=x2-4x+2lnx,∴f′(x)=(x>0),f(1)=-1,f′(1)=0,所以切線方程為y=-1.(2)f′(x)=(x>0),令f′(x)=0得x1=a,x2=1,當0<a<1時,在x∈(0,a)或x∈(1,+∞)時,f′(x)>0,在x∈(a,1)時,f′(x)<0,∴f(x)的單調遞增區(qū)間為(0,a)和(1,+∞),單調遞減區(qū)間為(a,1);當a=1時,f′(x)=≥0,∴f(x)的單調增區(qū)間為(0,+∞);當a>1時,在x∈(0,1)或x∈(a,+∞)時,f′(x)>0,在x∈(1,a)時,f′(x)<0,∴f(x)的單調增區(qū)間為(0,1)和(a,+∞),單調遞減區(qū)間為(1,a).(1)由(2)可知,f(x)在區(qū)間[1,e]上只可能有極小值點,∴f(x)在區(qū)間[1,e]上的最大值必在區(qū)間端點取到,∴f(1)=1-2(a+1)≤0且f(e)=e2-2(a+1)e+2a≤0,解得a≥.考點:?導數(shù)法求切線方程;?求含參數(shù)的函數(shù)的單調性問題;?恒成立問題求參數(shù)范圍.【方法點睛】恒成立問題求參數(shù)范圍常常將參數(shù)移到一邊轉化為函數(shù)最值問題即恒成立,即等價于.該解法的優(yōu)點是不用討論,但是當參數(shù)不易移到一邊,或移到一邊后另一邊的函數(shù)值域不易求時,就不要移,而是將不等式的一邊化為零即,由于此時函數(shù)含有參數(shù),所以應討論并求最值,從而求解.18、(1)8600件;(2)列聯(lián)表見解析,不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質量指標值與甲、乙兩套設備的選擇有關.【解題分析】

(1)計算出不合格品率,和不合格品件數(shù),由此求得合格品件數(shù).(2)根據(jù)題目所給表格和圖像數(shù)據(jù),填寫好聯(lián)表,計算出的值,由此判斷出“不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質量指標值與甲、乙兩套設備的選擇有關.”【題目詳解】解:(1)由題圖1知,乙套設備生產(chǎn)的不合格品的概率約為,∴乙套設備生產(chǎn)的10000件產(chǎn)品中不合格品約為(件),故合格品的件數(shù)為(件).(2)由題中的表1和圖1得到2×2列聯(lián)表如下:甲套設備乙套設備合計合格品9686182不合格品41418合計100100200將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算得的觀測值,因為6.105<6.635,所以不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質量指標值與甲、乙兩套設備的選擇有關.【題目點撥】本小題主要考查用頻率估計總體,考查聯(lián)表獨立性檢驗,考查運算求解能力,屬于中檔題.19、(1)證明見解析.(2).【解題分析】試題分析:(1)先根據(jù)平幾知識計算得,再根據(jù)線面垂直判定定理得結論,(2)先根據(jù)條件建立空間直角坐標系,設立各點坐標,根據(jù)方程組解得平面法向量,利用向量數(shù)量積得向量夾角,最后根據(jù)線面角與向量夾角互余關系求結果.試題解析:(1)證明:等腰梯形中,故在中,,所以平面(2)作于,以為軸建立如圖的空間直角坐標系,則求得平面的法向量為又,所以即與平面所成角的正弦值等于20、(1)見解析;(2)【解題分析】

(1)由得平面PAE,進而可得證;(2)先證得平面,設,以為坐標原點,的方向為軸正方向,建立空間直角坐標系,分別計算平面的法向量為和,設與平面所成角為,則,代入計算即可得解.【題目詳解】(1)證明:連接,因為,為線段的中點,所以.又,,所以為等邊三角形,.因為,所以平面,又平面,所以平面平面.(2)解:設,則,因為,所以,同理可證,所以平面.如圖,設,以為坐標原點,的方向為軸正方向,建立空間直角坐標系.易知為二面角的平面角,所以,從而.由,得.又由,,知,.設平面的法向量為,由,,得,不妨設,得.又,,所以.設與平面所成角為,則.所以與平面所成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論